Toward an automatic preoperative pipeline for image-guided temporal bone surgery.
Active shape models
Minimally-invasive surgery
Segmentation
Temporal bone
Trajectory planning
U-Net
Journal
International journal of computer assisted radiology and surgery
ISSN: 1861-6429
Titre abrégé: Int J Comput Assist Radiol Surg
Pays: Germany
ID NLM: 101499225
Informations de publication
Date de publication:
Jun 2019
Jun 2019
Historique:
received:
28
01
2019
accepted:
05
03
2019
pubmed:
20
3
2019
medline:
3
9
2019
entrez:
20
3
2019
Statut:
ppublish
Résumé
Minimally invasive surgery is often built upon a time-consuming preoperative step consisting of segmentation and trajectory planning. At the temporal bone, a complete automation of these two tasks might lead to faster interventions and more reproducible results, benefiting clinical workflow and patient health. We propose an automatic segmentation and trajectory planning pipeline for image-guided interventions at the temporal bone. For segmentation, we use a shape regularized deep learning approach that is capable of automatically detecting even the cluttered tiny structures specific for this anatomy. We then perform trajectory planning for both linear and nonlinear interventions on these automatically segmented risk structures. We evaluate the usability of segmentation algorithms for planning access canals to the cochlea and the internal auditory canal on 24 CT data sets of real patients. Our new approach achieves similar results to the existing semiautomatic method in terms of Dice but provides more accurate organ shapes for the subsequent trajectory planning step. The source code of the algorithms is publicly available. Automatic segmentation and trajectory planning for various clinical procedures at the temporal bone are feasible. The proposed automatic pipeline leads to an efficient and unbiased workflow for preoperative planning.
Identifiants
pubmed: 30888596
doi: 10.1007/s11548-019-01937-x
pii: 10.1007/s11548-019-01937-x
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
967-976Subventions
Organisme : Deutsche Forschungsgemeinschaft
ID : FOR 1585
Références
Conf Proc IEEE Eng Med Biol Soc. 2005;6:6285-8
pubmed: 17281704
Med Phys. 2008 Dec;35(12):5375-84
pubmed: 19175097
Med Image Anal. 2011 Dec;15(6):877-84
pubmed: 21684796
IEEE Trans Biomed Eng. 2011 Sep;58(9):2625-32
pubmed: 21708495
Neurosurgery. 2012 Mar;70(1 Suppl Operative):50-60; discussion 60
pubmed: 21909042
Int J Comput Assist Radiol Surg. 2014 Jan;9(1):11-20
pubmed: 23765213
Laryngoscope. 2014 Aug;124(8):1915-22
pubmed: 24272427
Biomed Res Int. 2014;2014:379295
pubmed: 25101276
Eur Arch Otorhinolaryngol. 2017 Feb;274(2):715-721
pubmed: 27704279
Acta Otolaryngol. 2017 Apr;137(4):447-454
pubmed: 28145157
IEEE Trans Biomed Eng. 2018 Jan;65(1):178-188
pubmed: 28459680
Int J Comput Assist Radiol Surg. 2017 Nov;12(11):1937-1944
pubmed: 28852952
Sci Data. 2017 Sep 19;4:170132
pubmed: 28925991
IEEE Robot Autom Lett. 2017;2(3):1488-1494
pubmed: 29202035
Int J Comput Assist Radiol Surg. 2018 May;13(5):637-646
pubmed: 29502230
Osteoarthritis Cartilage. 2018 May;26(5):680-688
pubmed: 29526784
IEEE Rev Biomed Eng. 2018;11:125-142
pubmed: 29994589