Peptides with the multibasic cleavage site of the hemagglutinin from highly pathogenic influenza viruses act as cell-penetrating via binding to heparan sulfate and neuropilins.


Journal

Biochemical and biophysical research communications
ISSN: 1090-2104
Titre abrégé: Biochem Biophys Res Commun
Pays: United States
ID NLM: 0372516

Informations de publication

Date de publication:
07 05 2019
Historique:
received: 05 03 2019
accepted: 12 03 2019
pubmed: 25 3 2019
medline: 9 4 2020
entrez: 25 3 2019
Statut: ppublish

Résumé

Cell-penetrating peptides (CPPs) show promise as an attractive delivery vehicle for therapeutic molecules-including nucleic acids, peptides, proteins, and even particulates-into several cell types. It is important to identify new CPPs and select the optimal CPP for each application, because CPPs differ in their internalized efficiency and internalization mechanisms. Here, we identified new CPPs derived from the peptides with the hemagglutinin cleavage site (pHACS) of highly pathogenic influenza viruses. We compared the potential of peptides from the pHACS of four subtypes of influenza A virus (H1, H3, H5, and H7) and an influenza B virus (H1-pHACS, H3-pHACS, H5-pHACS, H7-pHACS, and B-pHACS, respectively) to serve as CPPs. H5-pHACS and H7-pHACS, but not the other peptides, bound to mouse dendritic cells and human epithelial cells and were internalized efficiently into these cells. H5-pHACS and H7-pHACS required glycosaminoglycans, especially heparan sulfate and neuropilins, to bind to the cells. In addition, we designed a mutant H7-pHACS with superior cell-binding capability by changing a single amino acid. Furthermore, when conjugated with antigen, H5-pHACS and H7-pHACS induced antigen-specific antibody responses, demonstrating the usefulness of this antigen-delivery vehicle. Our results will improve our understanding of the mechanisms of CPPs and facilitate the development of novel drug-delivery vehicles designed to improve therapeutic efficacy.

Identifiants

pubmed: 30904159
pii: S0006-291X(19)30451-6
doi: 10.1016/j.bbrc.2019.03.068
pii:
doi:

Substances chimiques

Cell-Penetrating Peptides 0
Hemagglutinin Glycoproteins, Influenza Virus 0
Neuropilins 0
Heparitin Sulfate 9050-30-0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

453-459

Informations de copyright

Copyright © 2019 Elsevier Inc. All rights reserved.

Auteurs

Yasuyuki Yamamoto (Y)

Vaccine Creation Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; BIKEN Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.

Shigeyuki Tamiya (S)

Vaccine Creation Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.

Meito Shibuya (M)

Vaccine Creation Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.

Ikuhiko Nakase (I)

Laboratory for Cellular Regulation Chemistry, Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan.

Yasuo Yoshioka (Y)

Vaccine Creation Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; BIKEN Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan. Electronic address: y-yoshioka@biken.osaka-u.ac.jp.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH