Transient redirection of T cells for adoptive cell therapy with telomerase-specific T helper cell receptors isolated from long term survivors after cancer vaccination.
DP4
T cell receptor
T-helper cell
adoptive cell therapy
cancer
immunotherapy
long-term survivor
mRNA
retargeted T cell
telomerase
Journal
Oncoimmunology
ISSN: 2162-4011
Titre abrégé: Oncoimmunology
Pays: United States
ID NLM: 101570526
Informations de publication
Date de publication:
Historique:
received:
19
07
2018
revised:
26
11
2018
accepted:
17
12
2018
entrez:
26
3
2019
pubmed:
25
3
2019
medline:
25
3
2019
Statut:
epublish
Résumé
Adoptive cell therapy (ACT) with retargeted T cells has produced remarkable clinical responses against cancer, but also serious toxicity. Telomerase is overexpressed in most cancers, but also expressed in some normal cells, raising safety concerns. We hypothesize that ACT with T-helper cell receptors may overcome tumour tolerance, mobilize host immune cells and induce epitope spreading, with limited toxicity. From long term survivors after cancer vaccination, we have isolated telomerase-specific T cell receptors (TCRs) from T-helper cells. Herein, we report the development of transient retargeting of T cells with mRNA-based TCRs. This strategy allows for safer clinical testing and meaningful dose escalation. DP4 is the most common HLA molecule. We cloned two telomerase-specific, DP4-restricted TCRs into the mRNA expression vector pCIpA102, together with the sorter/marker/suicide gene RQR8. Donor T cells were electroporated with mRNA encoding TCR_RQR8. The results showed that both TCR_RQR8 constructs were expressed in >90% of T cells. The transfected T cells specifically recognized the relevant peptide, as well as naturally processed epitopes from a 177aa telomerase protein fragment, and remained functional for six days. A polyfunctional and Th1-like cytokine profile was observed. The TCRs were functional in both CD4+and CD8+recipient T cells, even though DP4-restricted. The findings demonstrate that the cloned TCRs confer recipient T cells with the desired telomerase-specificity and functionality. Preclinical experiments may provide limited information on the efficacy and toxicity of T-helper TCRs, as these mobilize the host immune system. We therefore intend to use the mRNA-based TCRs for a first-in-man trial.
Identifiants
pubmed: 30906659
doi: 10.1080/2162402X.2019.1565236
pii: 1565236
pmc: PMC6422370
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Pagination
e1565236Références
Immunity. 1999 Jun;10(6):673-9
pubmed: 10403642
J Immunol Methods. 2002 Jan 1;259(1-2):191-203
pubmed: 11730854
J Immunol. 2002 Dec 15;169(12):6928-34
pubmed: 12471126
Nature. 2003 Feb 20;421(6925):852-6
pubmed: 12594515
Clin Cancer Res. 2003 Mar;9(3):998-1008
pubmed: 12631598
Science. 2003 Apr 11;300(5617):337-9
pubmed: 12690201
J Exp Med. 2005 Jan 17;201(2):249-57
pubmed: 15657294
Cancer Immunol Immunother. 2005 Aug;54(8):721-8
pubmed: 16010587
Cancer Immunol Immunother. 2006 Dec;55(12):1553-64
pubmed: 16491401
Cancer Immunol Immunother. 2006 Nov;55(11):1432-42
pubmed: 16612595
Clin Cancer Res. 2008 Jan 1;14(1):4-7
pubmed: 18172245
Nat Methods. 2008 Feb;5(2):135-46
pubmed: 18235434
Nat Rev Cancer. 2008 Mar;8(3):167-79
pubmed: 18256617
Immunol Rev. 2008 Apr;222:129-44
pubmed: 18363998
J Exp Med. 2010 Mar 15;207(3):637-50
pubmed: 20156971
Mol Ther. 2011 Mar;19(3):620-6
pubmed: 21157437
Cytotherapy. 2011 May;13(5):629-40
pubmed: 21174490
Clin Cancer Res. 2011 Nov 1;17(21):6847-57
pubmed: 21918169
PLoS One. 2011;6(11):e27930
pubmed: 22132171
Oncoimmunology. 2012 Aug 1;1(5):670-686
pubmed: 22934259
Cancer Microenviron. 2013 Aug;6(2):123-33
pubmed: 23242673
Nature. 2013 Feb 21;494(7437):361-5
pubmed: 23376950
J Immunother. 2013 Feb;36(2):133-51
pubmed: 23377668
Mol Ther. 2013 Apr;21(4):904-12
pubmed: 23423337
Sci Transl Med. 2013 Mar 20;5(177):177ra38
pubmed: 23515080
N Engl J Med. 2013 Apr 18;368(16):1509-1518
pubmed: 23527958
Nat Rev Clin Oncol. 2013 May;10(5):267-76
pubmed: 23546520
Blood. 2013 Aug 8;122(6):863-71
pubmed: 23770775
Eur J Immunol. 2014 Jan;44(1):69-79
pubmed: 24114780
Cancer Immunol Res. 2014 Feb;2(2):112-20
pubmed: 24579088
Science. 2014 May 9;344(6184):641-5
pubmed: 24812403
Blood. 2014 Aug 21;124(8):1277-87
pubmed: 24970931
Science. 2015 Apr 3;348(6230):69-74
pubmed: 25838375
Oncoimmunology. 2015 Jan 22;4(3):e994370
pubmed: 25949915
Immunotherapy. 2015;7(5):535-44
pubmed: 26065478
Oncoimmunology. 2015 May 21;4(5):e1002723
pubmed: 26155389
Cancer Res. 2015 Sep 15;75(18):3747-59
pubmed: 26183926
Annu Rev Med. 2016;67:165-83
pubmed: 26332003
Sci Rep. 2015 Oct 08;5:14896
pubmed: 26447332
Immunity. 2016 Jan 19;44(1):179-193
pubmed: 26789923
Science. 2016 Mar 25;351(6280):1463-9
pubmed: 26940869
Scand J Immunol. 2016 Sep;84(3):191-3
pubmed: 27354164
Oncoimmunology. 2016 Oct 24;5(12):e1249090
pubmed: 28123886
Cancer Res. 2017 Apr 15;77(8):2040-2051
pubmed: 28235763
Oncoimmunology. 2017 Feb 6;6(2):e1171447
pubmed: 28344859
Oncoimmunology. 2017 Mar 17;6(4):e1302631
pubmed: 28507809
Clin Cancer Res. 2017 Oct 1;23(19):5846-5857
pubmed: 28536305
J Clin Oncol. 2017 Oct 10;35(29):3322-3329
pubmed: 28809608
Science. 1994 Dec 23;266(5193):2011-5
pubmed: 7605428
Eur J Cancer. 1997 Apr;33(5):787-91
pubmed: 9282118