Impact of pigment dispersion on trabecular meshwork cells.
Contraction
Cytoskeleton
Migration
Phagocytosis
Pigmentary glaucoma
Rho signaling pathway
Trabecular meshwork
Journal
Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie
ISSN: 1435-702X
Titre abrégé: Graefes Arch Clin Exp Ophthalmol
Pays: Germany
ID NLM: 8205248
Informations de publication
Date de publication:
Jun 2019
Jun 2019
Historique:
received:
13
07
2018
accepted:
29
11
2018
revised:
22
10
2018
pubmed:
29
3
2019
medline:
6
6
2019
entrez:
29
3
2019
Statut:
ppublish
Résumé
Dysfunction of the trabecular meshwork (TM) in pigmentary glaucoma contributes to increased aqueous humor outflow resistance and intraocular pressure. In this study, we investigated the effect of pigment dispersion on trabecular meshwork cells. Porcine TM cells from ab interno trabeculectomy specimens were exposed to pigment dispersion, then, analyzed for changes in morphology, immunostaining, and ultrastructure. Their abilities to phagocytose migrate, and contraction was quantified. An expression microarray, using 23,937 probes, and a pathway analysis were performed. Stress fiber formation was increased in the pigment dispersion group (P) (60.1 ± 0.3%, n = 10) compared to control (C) (38.4 ± 2.5%, n = 11, p < 0.001). Phagocytosis declined (number of cells with microspheres in P = 37.0 ± 1.1% and in C = 68.7 ± 1.3%, n = 3, p < 0.001) and migration was reduced after 6 h (cells within the visual field over 6 h in P = 28.0.1 ± 2.3 (n = 12) and in C = 40.6 ± 3.3 (n = 13), p < 0.01). Pigment induced contraction at 24 h onwards (p < 0.01). Microarray analysis revealed that Rho signaling was central to these responses. Exposure of TM cells to pigment dispersion resulted in reduced phagocytosis and migration, as well as increased stress fiber formation and cell contraction. The Rho signaling pathway played a central and early role, suggesting that its inhibitors could be used as a specific intervention in treatment of pigmentary glaucoma.
Identifiants
pubmed: 30919079
doi: 10.1007/s00417-019-04300-7
pii: 10.1007/s00417-019-04300-7
pmc: PMC7847180
mid: NIHMS1660238
doi:
Substances chimiques
Retinal Pigments
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1217-1230Subventions
Organisme : NEI NIH HHS
ID : K08 EY022737
Pays : United States
Organisme : NEI NIH HHS
ID : P30 EY008098
Pays : United States
Organisme : NEI NIH HHS
ID : P30 EY08098
Pays : United States
Organisme : NEI NIH HHS
ID : K08-EY022737
Pays : United States
Références
Exp Eye Res. 2018 Jun;171:164-173
pubmed: 29526795
Invest Ophthalmol Vis Sci. 2000 Nov;41(12):3678-93
pubmed: 11053263
Invest Ophthalmol Vis Sci. 1986 Mar;27(3):387-95
pubmed: 3949467
PLoS One. 2016 Mar 21;11(3):e0151754
pubmed: 26998833
Graefes Arch Clin Exp Ophthalmol. 2019 Jan;257(1):101-109
pubmed: 30456419
F1000Res. 2018 Feb 12;7:174
pubmed: 29721307
Prog Retin Eye Res. 2013 Nov;37:1-12
pubmed: 23770081
Invest Ophthalmol Vis Sci. 1994 Jan;35(1):281-94
pubmed: 8300356
Am J Ophthalmol. 2003 Jun;135(6):794-9
pubmed: 12788118
Invest Ophthalmol Vis Sci. 2011 Oct 17;52(11):8068-75
pubmed: 21911581
Exp Eye Res. 2008 Jan;86(1):3-17
pubmed: 18053986
Invest Ophthalmol Vis Sci. 2006 Mar;47(3):997-1007
pubmed: 16505034
Invest Ophthalmol Vis Sci. 2004 Jul;45(7):2263-71
pubmed: 15223804
Invest Ophthalmol Vis Sci. 2003 Jun;44(6):2588-96
pubmed: 12766061
Graefes Arch Clin Exp Ophthalmol. 2001 Feb;239(2):109-13
pubmed: 11372538
Eye (Lond). 2000 Jun;14 ( Pt 3B):503-14
pubmed: 11026980
Invest Ophthalmol Vis Sci. 1997 Aug;38(9):1902-7
pubmed: 9286282
In Vitro Cell Dev Biol Anim. 1999 Mar;35(3):144-9
pubmed: 10476910
Invest Ophthalmol Vis Sci. 2011 Mar 18;52(3):1474-85
pubmed: 21071747
J Ocul Biol. 2013 Jun 5;1(1):
pubmed: 24932460
Wound Repair Regen. 2007 Mar-Apr;15(2):236-44
pubmed: 17352756
Invest Ophthalmol Vis Sci. 2000 Mar;41(3):619-23
pubmed: 10711672
Sci Rep. 2018 Apr 3;8(1):5468
pubmed: 29615741
Int Ophthalmol. 2017 Apr;37(2):371-375
pubmed: 27245680
J Pharm Sci. 2005 Apr;94(4):701-8
pubmed: 15682386
Exp Cell Res. 2016 Apr 10;343(1):14-20
pubmed: 26519907
Invest Ophthalmol Vis Sci. 2011 May 05;52(6):2952-9
pubmed: 21273548
Science. 1993 May 21;260(5111):1124-7
pubmed: 7684161
Clin Exp Ophthalmol. 2016 Sep;44(7):563-569
pubmed: 26946187
Cell Motil Cytoskeleton. 2005 Feb;60(2):83-95
pubmed: 15593281
PLoS One. 2014 Sep 12;9(9):e107446
pubmed: 25216052
Invest Ophthalmol Vis Sci. 2013 Jul 24;54(7):5000-11
pubmed: 23821196
J Glaucoma. 2006 Apr;15(2):142-51
pubmed: 16633228
Exp Eye Res. 2006 Mar;82(3):362-70
pubmed: 16125171
Clin Exp Ophthalmol. 2016 Dec;44(9):783-788
pubmed: 27341769
J Cell Physiol. 1999 Aug;180(2):182-9
pubmed: 10395288
Invest Ophthalmol Vis Sci. 2016 Feb;57(2):719-30
pubmed: 26906158
J Ocul Pharmacol Ther. 2014 Mar-Apr;30(2-3):254-66
pubmed: 24456002
J Cell Sci. 2012 Apr 15;125(Pt 8):1855-64
pubmed: 22544950
Exp Eye Res. 2016 Apr;145:393-400
pubmed: 26927931
Exp Cell Res. 2014 Oct 15;328(1):164-171
pubmed: 24992043
Invest Ophthalmol Vis Sci. 1992 Feb;33(2):424-9
pubmed: 1740375
Clin Exp Ophthalmol. 2008 Dec;36(9):868-82
pubmed: 19278484
Nat Med. 1999 Dec;5(12):1390-5
pubmed: 10581081
Lasers Med Sci. 2015 Dec;30(9):2295-302
pubmed: 26404781
Exp Eye Res. 2015 Jul;136:29-33
pubmed: 25956210
Invest Ophthalmol Vis Sci. 2004 May;45(5):1389-95
pubmed: 15111593
Curr Eye Res. 1995 Dec;14(12):1095-1100
pubmed: 8974838
Exp Eye Res. 2009 Apr;88(4):648-55
pubmed: 19239914
Exp Cell Res. 2016 Oct 1;347(2):301-11
pubmed: 27539661
Exp Eye Res. 2009 Apr;88(4):713-7
pubmed: 18793636
Cytoskeleton (Hoboken). 2010 Sep;67(9):545-54
pubmed: 20803696
Exp Eye Res. 2007 Feb;84(2):275-84
pubmed: 17126833
PLoS One. 2012;7(12):e51688
pubmed: 23272142
Prog Retin Eye Res. 2015 Jan;44:86-98
pubmed: 25223880
Cell Tissue Res. 2012 Jan;347(1):279-90
pubmed: 22101332
Open Ophthalmol J. 2010 Sep 03;4:52-9
pubmed: 21293732
Ophthalmology. 2015 Feb;122(2):302-7
pubmed: 25270273