Beyond the extreme: recovery of carbon and water relations in woody plants following heat and drought stress.
carbon allocation
hydraulic conductance
non-structural carbohydrates
post-drought
post-heat
recovery
stress legacy
trees
xylem embolism
Journal
Tree physiology
ISSN: 1758-4469
Titre abrégé: Tree Physiol
Pays: Canada
ID NLM: 100955338
Informations de publication
Date de publication:
01 08 2019
01 08 2019
Historique:
received:
23
08
2018
revised:
08
01
2019
accepted:
13
03
2019
pubmed:
30
3
2019
medline:
19
5
2020
entrez:
30
3
2019
Statut:
ppublish
Résumé
Plant responses to drought and heat stress have been extensively studied, whereas post-stress recovery, which is fundamental to understanding stress resilience, has received much less attention. Here, we present a conceptual stress-recovery framework with respect to hydraulic and metabolic functioning in woody plants. We further synthesize results from controlled experimental studies following heat or drought events and highlight underlying mechanisms that drive post-stress recovery. We find that the pace of recovery differs among physiological processes. Leaf water potential and abscisic acid concentration typically recover within few days upon rewetting, while leaf gas exchange-related variables lag behind. Under increased drought severity as indicated by a loss in xylem hydraulic conductance, the time for stomatal conductance recovery increases markedly. Following heat stress release, a similar delay in leaf gas exchange recovery has been observed, but the reasons are most likely a slow reversal of photosynthetic impairment and other temperature-related leaf damages, which typically manifest at temperatures above 40 °C. Based thereon, we suggest that recovery of gas exchange is fast following mild stress, while recovery is slow and reliant on the efficiency of repair and regrowth when stress results in functional impairment and damage to critical plant processes. We further propose that increasing stress severity, particular after critical stress levels have been reached, increases the carbon cost involved in reestablishing functionality. This concept can guide future experimental research and provides a base for modeling post-stress recovery of carbon and water relations in trees.
Identifiants
pubmed: 30924906
pii: 5423350
doi: 10.1093/treephys/tpz032
pmc: PMC6703153
doi:
Substances chimiques
Water
059QF0KO0R
Carbon
7440-44-0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1285-1299Informations de copyright
© The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Références
New Phytol. 2016 Jul;211(2):386-403
pubmed: 27061438
Plant Signal Behav. 2010 Jun;5(6):649-54
pubmed: 20404516
Ecol Lett. 2017 Nov;20(11):1437-1447
pubmed: 28922708
Tree Physiol. 2014 Jan;34(1):29-38
pubmed: 24420388
Nat Plants. 2016 Jul 18;2:16111
pubmed: 27428669
Glob Chang Biol. 2018 Jun;24(6):2390-2402
pubmed: 29316093
J Exp Bot. 2016 Sep;67(17):4917-9
pubmed: 27604803
New Phytol. 2010 Oct;188(2):533-42
pubmed: 20673281
BMC Genomics. 2014 Jun 26;15:527
pubmed: 24964784
Plant Physiol Biochem. 2017 Nov;120:232-241
pubmed: 29073538
New Phytol. 2015 Feb;205(3):1095-1105
pubmed: 25385085
Plant Cell Environ. 2008 May;31(5):602-21
pubmed: 17996013
New Phytol. 2012 Jan;193(1):30-50
pubmed: 22085245
Plant Physiol. 2013 Jul;162(3):1370-7
pubmed: 23709665
Plant Cell Environ. 2015 Dec;38(12):2575-88
pubmed: 25997464
Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):13098-13103
pubmed: 27807136
Tree Physiol. 1992 Jul;11(1):95-104
pubmed: 14969970
Tree Physiol. 2012 Sep;32(9):1161-70
pubmed: 22907978
J Exp Bot. 2012 Jan;63(2):643-58
pubmed: 22016424
Oecologia. 2014 Aug;175(4):1051-61
pubmed: 24958368
Plant Physiol. 2015 Jan;167(1):40-3
pubmed: 25378693
Trends Ecol Evol. 2018 Apr;33(4):251-259
pubmed: 29477443
Plant Cell Environ. 2015 Sep;38(9):1699-712
pubmed: 25065257
Ecol Appl. 2016 Jan;26(1):17-23
pubmed: 27039506
New Phytol. 2009;181(3):672-82
pubmed: 19032443
Physiol Plant. 2010 Nov;140(3):246-57
pubmed: 20618763
Tree Physiol. 2013 Apr;33(4):331-4
pubmed: 23612243
Glob Chang Biol. 2017 Jan;23(1):209-223
pubmed: 27562605
Physiol Plant. 2007 Nov;131(3):412-21
pubmed: 18251880
Tree Physiol. 2010 Jul;30(7):876-85
pubmed: 20516484
New Phytol. 2016 Oct;212(1):80-95
pubmed: 27189787
Tree Physiol. 2012 Jun;32(6):764-75
pubmed: 22302370
Science. 2015 Jul 31;349(6247):528-32
pubmed: 26228147
Plant Physiol. 2009 Jan;149(1):575-84
pubmed: 19011001
Tree Physiol. 2015 Apr;35(4):415-24
pubmed: 25030936
New Phytol. 2012 Oct;196(2):448-461
pubmed: 22897414
Glob Chang Biol. 2016 Dec;22(12):4124-4133
pubmed: 27122300
Ann Bot. 2002 Feb;89(2):183-9
pubmed: 12099349
New Phytol. 2009 Dec;184(4):950-61
pubmed: 19843305
New Phytol. 2007;174(4):799-810
pubmed: 17504463
Plant Cell Environ. 2014 Nov;37(11):2470-90
pubmed: 24635724
Plant Cell Environ. 2009 Nov;32(11):1584-95
pubmed: 19627564
New Phytol. 2014 Jul;203(2):388-400
pubmed: 24702644
Tree Physiol. 1996 Jun;16(6):557-65
pubmed: 14871709
Plant Cell Environ. 2018 Dec;41(12):2869-2881
pubmed: 30106477
J Plant Physiol. 2016 Oct 20;205:57-66
pubmed: 27614786
Front Plant Sci. 2013 Apr 24;4:108
pubmed: 23630539
Nature. 2005 Sep 22;437(7058):529-33
pubmed: 16177786
Front Plant Sci. 2018 Feb 19;9:187
pubmed: 29515605
Nature. 2017 Aug 9;548(7666):202-205
pubmed: 28796213
Annu Rev Physiol. 1995;57:19-42
pubmed: 7778864
Plant Cell Environ. 2010 May;33(5):863-75
pubmed: 20051039
Sci Rep. 2017 Oct 30;7(1):14308
pubmed: 29085007
Plant Cell Environ. 2011 Jan;34(1):113-26
pubmed: 21029116
Plant Physiol. 2017 Feb;173(2):1197-1210
pubmed: 28049739
New Phytol. 2015 Nov;208(3):674-83
pubmed: 26058406
Plant Cell Environ. 2014 Mar;37(3):617-26
pubmed: 23937187
New Phytol. 2002 Dec;156(3):351-361
pubmed: 33873577
New Phytol. 2017 Sep;215(4):1399-1412
pubmed: 28620915
Plant Cell Environ. 2013 Nov;36(11):1938-49
pubmed: 23701011
Tree Physiol. 2011 Mar;31(3):339-48
pubmed: 21489968
Nature. 2018 Jun;558(7711):531-539
pubmed: 29950621
New Phytol. 2016 Mar;209(4):1403-9
pubmed: 26742653
Plant Cell Environ. 2013 Jan;36(1):103-15
pubmed: 22690910
Tree Physiol. 2016 Feb;36(2):179-92
pubmed: 26614785
Ecol Lett. 2018 Oct;21(10):1552-1560
pubmed: 30125446
Plant Cell Environ. 2017 Sep;40(9):1711-1724
pubmed: 28432768
Plant Sci. 2011 Apr;180(4):604-11
pubmed: 21421408
Plant Physiol. 2016 Nov;172(3):1669-1678
pubmed: 27621427
Glob Chang Biol. 2017 Oct;23(10):4235-4244
pubmed: 28192618
Oecologia. 2002 May;131(3):333-342
pubmed: 28547704
Tree Physiol. 2016 Feb;36(2):164-78
pubmed: 26491055
Nat Ecol Evol. 2017 Sep;1(9):1285-1291
pubmed: 29046541
Plant Physiol. 2016 Dec;172(4):2261-2274
pubmed: 27733514
Plant Cell Environ. 2017 Sep;40(9):1671-1678
pubmed: 28160522
New Phytol. 2014 Mar;201(4):1086-1095
pubmed: 24261587
Plant Biol (Stuttg). 2009 Nov;11 Suppl 1:83-93
pubmed: 19778372
New Phytol. 2017 Apr;214(2):513-520
pubmed: 27891619
Tree Physiol. 2018 Dec 1;38(12):1764-1778
pubmed: 30376128