Inhibition of MPTP-induced α-synuclein oligomerization by fatty acid-binding protein 3 ligand in MPTP-treated mice.
1-methyl-1,2,3,6-tetrahydropyridine
Fatty acid-binding protein
Parkinson's disease
Pyrazole derivative
α-synuclein
Journal
Neuropharmacology
ISSN: 1873-7064
Titre abrégé: Neuropharmacology
Pays: England
ID NLM: 0236217
Informations de publication
Date de publication:
15 05 2019
15 05 2019
Historique:
received:
29
12
2018
revised:
24
03
2019
accepted:
25
03
2019
pubmed:
2
4
2019
medline:
22
1
2020
entrez:
2
4
2019
Statut:
ppublish
Résumé
Accumulation and aggregation of α-synuclein (αSyn) triggers dopaminergic (DAergic) neuronal loss in Parkinson's disease (PD). This pathological event is partly facilitated by the presence of long-chain polyunsaturated fatty acids (LC-PUFAs), including arachidonic acid. The intracellular transport and metabolism of LC-PUFAs are mediated by fatty acid-binding proteins (FABPs). We previously reported that heart-type FABP (FABP3) interacts with αSyn, thereby promoting αSyn oligomerization in DAergic neurons in the substantia nigra pars compacta (SNpc) following 1-methyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. This αSyn oligomerization is prevented in Fabp3 gene knock out mice. We document a novel FABP3 ligand, MF1 (4-(2-(1-(2-chlorophenyl)-5-phenyl-1H-pyrazol-3-yl)phenoxy)butanoic acid), that inhibits αSyn accumulation in DA neurons, thereby inhibiting the oligomerization of αSyn, loss of DAergic neurons, and PD-like motor deficits in MPTP-treated mice. Chronic oral administration of MF1 (0.3 or 1.0 mg/kg/day) significantly improved motor impairments and inhibited MPTP-induced accumulation and oligomerization of αSyn in the SNpc, and in turn prevented loss of tyrosine hydroxylase (TH)-positive cells in the SNpc. MF1 administration (0.1, 0.3, or 1.0 mg/kg/day) also restored MPTP-induced cognitive impairments. Although chronic administration of l-DOPA (3,4-dihydroxl-l-phenylalanine; 25 mg/kg/day, i.p.) also improved motor deficits, it failed to improve the cognitive impairments. In addition, l-DOPA failed to inhibit DAergic neuronal loss and αSyn pathologies in the SNpc. In summary, the novel FABP3 ligand MF1 rescues MPTP-induced behavioural and neuropathological features, suggesting that MF1 may be a disease-modifying drug candidate for synucleinopathies.
Identifiants
pubmed: 30930168
pii: S0028-3908(19)30108-X
doi: 10.1016/j.neuropharm.2019.03.029
pii:
doi:
Substances chimiques
Fabp3 protein, mouse
0
Fatty Acid Binding Protein 3
0
alpha-Synuclein
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
164-174Informations de copyright
Copyright © 2019. Published by Elsevier Ltd.