Analysis of 1508 Plasma Samples by Capillary-Flow Data-Independent Acquisition Profiles Proteomics of Weight Loss and Maintenance.

Absolute quantification Clinical proteomics Label-free quantification Plasma or serum analysis SWATH-MS data-independent acquisition high throughput single shot stable isotope standards

Journal

Molecular & cellular proteomics : MCP
ISSN: 1535-9484
Titre abrégé: Mol Cell Proteomics
Pays: United States
ID NLM: 101125647

Informations de publication

Date de publication:
06 2019
Historique:
received: 23 12 2018
revised: 26 03 2019
pubmed: 6 4 2019
medline: 22 1 2020
entrez: 6 4 2019
Statut: ppublish

Résumé

Comprehensive, high throughput analysis of the plasma proteome has the potential to enable holistic analysis of the health state of an individual. Based on our own experience and the evaluation of recent large-scale plasma mass spectrometry (MS) based proteomic studies, we identified two outstanding challenges: slow and delicate nano-flow liquid chromatography (LC) and irreproducibility of identification of data-dependent acquisition (DDA). We determined an optimal solution reducing these limitations with robust capillary-flow data-independent acquisition (DIA) MS. This platform can measure 31 plasma proteomes per day. Using this setup, we acquired a large-scale plasma study of the diet, obesity and genes dietary (DiOGenes) comprising 1508 samples. Proving the robustness, the complete acquisition was achieved on a single analytical column. Totally, 565 proteins (459 identified with two or more peptide sequences) were profiled with 74% data set completeness. On average 408 proteins (5246 peptides) were identified per acquisition (319 proteins in 90% of all acquisitions). The workflow reproducibility was assessed using 34 quality control pools acquired at regular intervals, resulting in 92% data set completeness with CVs for protein measurements of 10.9%.The profiles of 20 apolipoproteins could be profiled revealing distinct changes. The weight loss and weight maintenance resulted in sustained effects on low-grade inflammation, as well as steroid hormone and lipid metabolism, indicating beneficial effects. Comparison to other large-scale plasma weight loss studies demonstrated high robustness and quality of biomarker candidates identified. Tracking of nonenzymatic glycation indicated a delayed, slight reduction of glycation in the weight maintenance phase. Using stable-isotope-references, we could directly and absolutely quantify 60 proteins in the DIA.In conclusion, we present herein the first large-scale plasma DIA study and one of the largest clinical research proteomic studies to date. Application of this fast and robust workflow has great potential to advance biomarker discovery in plasma.

Identifiants

pubmed: 30948622
pii: S1535-9476(20)31823-5
doi: 10.1074/mcp.RA118.001288
pmc: PMC6553938
doi:

Substances chimiques

Blood Proteins 0
Proteome 0

Types de publication

Journal Article Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1242-1254

Informations de copyright

© 2019 Bruderer et al.

Références

Nucleic Acids Res. 2016 Jan 4;44(D1):D447-56
pubmed: 26527722
J Endocrinol. 2016 Jul;230(1):R13-25
pubmed: 27113851
J Proteomics. 2009 Jul 21;72(5):740-9
pubmed: 19341828
Mol Syst Biol. 2016 Dec 22;12(12):901
pubmed: 28007936
J Proteome Res. 2011 Apr 1;10(4):1794-805
pubmed: 21254760
Mol Cell Biol. 2012 Oct;32(20):4116-30
pubmed: 22869525
Eur J Clin Invest. 2015 Nov;45(11):1209-17
pubmed: 26291691
Biochem Biophys Res Commun. 2018 Feb 5;496(2):287-293
pubmed: 29317208
Diabetes Res Clin Pract. 2014 Aug;105(2):141-50
pubmed: 24798950
Obes Rev. 2010 Jan;11(1):76-91
pubmed: 19470086
J Proteome Res. 2009 Aug;8(8):3872-81
pubmed: 19522537
Mol Cell Proteomics. 2017 Mar;16(3):327-328
pubmed: 28183812
Proteomics. 2014 Jul;14(13-14):1587-92
pubmed: 24737731
Physiol Genomics. 2017 Jul 1;49(7):339-345
pubmed: 28500253
Mol Cell Proteomics. 2018 Nov;17(11):2284-2296
pubmed: 30104208
Nat Methods. 2017 Sep;14(9):921-927
pubmed: 28825704
Methods Enzymol. 2005;401:9-42
pubmed: 16399377
Metabolism. 2012 Jul;61(7):906-21
pubmed: 22304839
Bioinformatics. 2014 Feb 15;30(4):523-30
pubmed: 24336805
Mol Cell Proteomics. 2015 May;14(5):1400-10
pubmed: 25724911
Mol Cell Proteomics. 2013 Nov;12(11):3330-8
pubmed: 23878402
Proteomics Clin Appl. 2018 Jan;12(1):
pubmed: 28371297
Nat Biotechnol. 2008 Dec;26(12):1367-72
pubmed: 19029910
J Proteome Res. 2016 Feb 5;15(2):389-99
pubmed: 26620284
Int J Obes (Lond). 2015 May;39(5):834-41
pubmed: 25287751
J Proteome Res. 2018 May 4;17(5):1844-1851
pubmed: 29578715
Clin Chem. 2010 Feb;56(2):177-85
pubmed: 19884488
Angew Chem Int Ed Engl. 2014 Oct 6;53(41):10864-6
pubmed: 25079383
Clin Chem. 2013 Jan;59(1):194-7
pubmed: 23150058
Sci Rep. 2018 Mar 12;8(1):4346
pubmed: 29531254
Front Immunol. 2013 Apr 23;4:93
pubmed: 23630525
Anal Chem. 2018 Aug 7;90(15):8905-8911
pubmed: 29984981
Expert Rev Proteomics. 2017 Aug;14(8):677-689
pubmed: 28689445
N Engl J Med. 2010 Nov 25;363(22):2102-13
pubmed: 21105792
Nat Genet. 2008 Jan;40(1):26-8
pubmed: 18084292
N Engl J Med. 2013 Jul 11;369(2):145-54
pubmed: 23796131
J Proteome Res. 2017 Dec 1;16(12):4299-4310
pubmed: 28938075
J Biol Chem. 1999 Jan 15;274(3):1814-20
pubmed: 9880564
BMC Med Genomics. 2008 Sep 21;1:42
pubmed: 18803878
Int J Endocrinol. 2013;2013:412103
pubmed: 23573087
Int J Mol Sci. 2018 Apr 14;19(4):
pubmed: 29662007
Sci Rep. 2018 Nov 19;8(1):16981
pubmed: 30451909
Proteomes. 2013 Aug 27;1(2):109-127
pubmed: 28250400
Cancer Res. 1998 Jun 1;58(11):2359-65
pubmed: 9622075
Mol Cell Proteomics. 2017 Dec;16(12):2296-2309
pubmed: 29070702
Circulation. 2018 Nov 27;138(22):2482-2485
pubmed: 30524136
Int J Obes (Lond). 2010 Nov;34(11):1559-65
pubmed: 20514048
Nat Med. 2001 Aug;7(8):941-6
pubmed: 11479627
Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5
pubmed: 12883005
Nat Methods. 2011 May;8(5):430-5
pubmed: 21423193
J Proteome Res. 2008 May;7(5):2025-32
pubmed: 18396901
Nat Rev Endocrinol. 2017 Sep;13(9):509-520
pubmed: 28621339
EPMA J. 2013 Feb 25;4(1):7
pubmed: 23442211
Lancet. 2005 Apr 16-22;365(9468):1415-28
pubmed: 15836891
Cell Syst. 2016 Mar 23;2(3):185-95
pubmed: 27135364
Nature. 2016 Sep 14;537(7620):347-55
pubmed: 27629641
Mol Syst Biol. 2015 Feb 04;11(1):786
pubmed: 25652787
Mol Cell. 2013 Feb 21;49(4):583-90
pubmed: 23438854
Nat Protoc. 2017 Aug;12(8):1683-1701
pubmed: 28749931

Auteurs

Roland Bruderer (R)

From the ‡Biognosys, 8952 Zurich-Schlieren, Switzerland.

Jan Muntel (J)

From the ‡Biognosys, 8952 Zurich-Schlieren, Switzerland.

Sebastian Müller (S)

From the ‡Biognosys, 8952 Zurich-Schlieren, Switzerland.

Oliver M Bernhardt (OM)

From the ‡Biognosys, 8952 Zurich-Schlieren, Switzerland.

Tejas Gandhi (T)

From the ‡Biognosys, 8952 Zurich-Schlieren, Switzerland.

Ornella Cominetti (O)

§Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland.

Charlotte Macron (C)

§Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland.

Jérôme Carayol (J)

§Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland.

Oliver Rinner (O)

From the ‡Biognosys, 8952 Zurich-Schlieren, Switzerland.

Arne Astrup (A)

¶Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2200 Copenhagen, Denmark.

Wim H M Saris (WHM)

‖NUTRIM, School for Nutrition, Toxicology and Metabolism, Department of Human Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands.

Jörg Hager (J)

§Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland.

Armand Valsesia (A)

§Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland.

Loïc Dayon (L)

§Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland.

Lukas Reiter (L)

From the ‡Biognosys, 8952 Zurich-Schlieren, Switzerland; lukas.reiter@biognosys.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH