SDF-1/CXCR4 signalling is involved in blood vessel growth and remodelling by intussusception.
Animals
Benzylamines
Bone Marrow Cells
/ metabolism
Cell Adhesion
/ genetics
Chemokine CXCL12
/ genetics
Chick Embryo
Cyclams
Endothelial Cells
/ metabolism
Hepatocytes
/ metabolism
Heterocyclic Compounds
/ pharmacology
Intussusception
/ genetics
Leukocytes, Mononuclear
/ metabolism
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
Microscopy, Electron, Transmission
Neovascularization, Pathologic
/ diagnostic imaging
Receptor, Notch1
/ antagonists & inhibitors
Receptors, CXCR4
/ antagonists & inhibitors
Recombinant Proteins
/ genetics
Signal Transduction
/ genetics
SDF-1/CXCR4 signalling
bone marrow-derived mononuclear cells
intussusceptive angiogenesis
vessel remodelling
Journal
Journal of cellular and molecular medicine
ISSN: 1582-4934
Titre abrégé: J Cell Mol Med
Pays: England
ID NLM: 101083777
Informations de publication
Date de publication:
06 2019
06 2019
Historique:
received:
25
10
2018
revised:
15
02
2019
accepted:
26
02
2019
pubmed:
6
4
2019
medline:
31
7
2020
entrez:
6
4
2019
Statut:
ppublish
Résumé
The precise mechanisms of SDF-1 (CXCL12) in angiogenesis are not fully elucidated. Recently, we showed that Notch inhibition induces extensive intussusceptive angiogenesis by recruitment of mononuclear cells and it was associated with increased levels of SDF-1 and CXCR4. In the current study, we demonstrated SDF-1 expression in liver sinusoidal vessels of Notch1 knockout mice with regenerative hyperplasia by means of intussusception, but we did not detect any SDF-1 expression in wild-type mice with normal liver vessel structure. In addition, pharmacological inhibition of SDF-1/CXCR4 signalling by AMD3100 perturbs intussusceptive vascular growth and abolishes mononuclear cell recruitment in the chicken area vasculosa. In contrast, treatment with recombinant SDF-1 protein increased microvascular density by 34% through augmentation of pillar number compared to controls. The number of extravasating mononuclear cells was four times higher after SDF-1 application and two times less after blocking this pathway. Bone marrow-derived mononuclear cells (BMDC) were recruited to vessels in response to elevated expression of SDF-1 in endothelial cells. They participated in formation and stabilization of pillars. The current study is the first report to implicate SDF-1/CXCR4 signalling in intussusceptive angiogenesis and further highlights the stabilizing role of BMDC in the formation of pillars during vascular remodelling.
Identifiants
pubmed: 30950188
doi: 10.1111/jcmm.14269
pmc: PMC6533523
doi:
Substances chimiques
Benzylamines
0
CXCR4 protein, mouse
0
Chemokine CXCL12
0
Cxcl12 protein, mouse
0
Cyclams
0
Heterocyclic Compounds
0
Notch1 protein, mouse
0
Receptor, Notch1
0
Receptors, CXCR4
0
Recombinant Proteins
0
plerixafor
S915P5499N
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3916-3926Informations de copyright
© 2019 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Références
Pharmacol Ther. 2018 Jan;181:156-168
pubmed: 28827151
Nat Cell Biol. 2017 Aug;19(8):915-927
pubmed: 28714968
Am J Pathol. 2011 Apr;178(4):1899-912
pubmed: 21435466
Circ Res. 2000 Feb 18;86(3):286-92
pubmed: 10679480
Blood. 2002 Apr 15;99(8):2703-11
pubmed: 11929756
Br J Cancer. 2011 Jun 7;104(12):1805-9
pubmed: 21587260
J Neuropathol Exp Neurol. 2011 Nov;70(11):979-91
pubmed: 22002424
Angiogenesis. 2013 Oct;16(4):921-37
pubmed: 23881168
Dev Dyn. 2002 Aug;224(4):391-402
pubmed: 12203731
J Biomed Sci. 2017 Aug 3;24(1):52
pubmed: 28774332
J Electron Microsc (Tokyo). 2011;60(4):267-74
pubmed: 21622976
Liver Int. 2013 Oct;33(9):1428-40
pubmed: 23870052
Mol Cancer Ther. 2011 Jun;10(6):1007-17
pubmed: 21487053
PLoS One. 2011;6(9):e25222
pubmed: 21949886
Nat Rev Mol Cell Biol. 2009 May;10(5):353-9
pubmed: 19373240
Science. 1997 Feb 14;275(5302):964-7
pubmed: 9020076
Cardiovasc Res. 2010 Oct 1;88(1):186-95
pubmed: 20501509
J Vasc Res. 2012;49(5):390-404
pubmed: 22739226
Angiogenesis. 2012 Mar;15(1):23-32
pubmed: 21969134
Blood. 2011 Dec 8;118(24):6461-4
pubmed: 21828132
Arch Pharm Res. 2018 Jul;41(7):711-724
pubmed: 29961196
Angiogenesis. 2011 Sep;14(3):393-405
pubmed: 21744299
J Neurosci. 2011 Nov 2;31(44):15894-903
pubmed: 22049432
Blood. 2010 Oct 28;116(17):3367-71
pubmed: 20453162
Stem Cells Transl Med. 2018 Jan;7(1):115-124
pubmed: 29119710
J Cell Mol Med. 2019 Jun;23(6):3916-3926
pubmed: 30950188
Neural Regen Res. 2014 Aug 1;9(15):1425-9
pubmed: 25317152
Eur J Clin Invest. 2013 Jan;43(1):100-7
pubmed: 23083351
J Leukoc Biol. 2010 Sep;88(3):463-73
pubmed: 20501749
Adv Cancer Res. 2014;124:31-82
pubmed: 25287686
Methods Mol Biol. 2012;904:235-42
pubmed: 22890936
Cardiovasc Res. 2012 Feb 1;93(2):223-31
pubmed: 22012957
Dev Biol. 2012 Dec 15;372(2):157-65
pubmed: 23031691
Gastroenterology. 2012 Apr;142(4):967-977.e2
pubmed: 22245843
Int J Dev Biol. 2011;55(4-5):563-7
pubmed: 21858777
Nat Commun. 2017 Nov 20;8(1):1620
pubmed: 29158473
Ther Clin Risk Manag. 2015 Sep 01;11:1337-44
pubmed: 26366086
Scanning. 2014 May-Jun;36(3):293-300
pubmed: 23801220
Am J Pathol. 2011 Sep;179(3):1573-85
pubmed: 21827961
J Exp Med. 2002 May 6;195(9):1145-54
pubmed: 11994419
J Clin Invest. 2005 Jan;115(1):86-93
pubmed: 15630447
Microvasc Res. 2010 Mar;79(2):93-101
pubmed: 20080108
J Cell Mol Med. 2012 Sep;16(9):2035-48
pubmed: 22128761
Prog Mol Biol Transl Sci. 2012;111:243-64
pubmed: 22917234
J Cardiovasc Transl Res. 2018 Oct;11(5):393-402
pubmed: 29777508
Rom J Morphol Embryol. 2011;52(2):613-6
pubmed: 21655651
Int Arch Allergy Immunol. 2001 Jan-Mar;124(1-3):142-5
pubmed: 11306951
Cancer. 2012 Jul 15;118(14):3455-67
pubmed: 22086782
Respir Physiol Neurobiol. 2011 Aug 31;178(1):30-8
pubmed: 21477666