The actions of ghrelin in the paraventricular nucleus: energy balance and neuroendocrine implications.
food intake
ghrelin
hypothalamus
neuroendocrinology
Journal
Annals of the New York Academy of Sciences
ISSN: 1749-6632
Titre abrégé: Ann N Y Acad Sci
Pays: United States
ID NLM: 7506858
Informations de publication
Date de publication:
11 2019
11 2019
Historique:
received:
21
12
2018
revised:
28
02
2019
accepted:
10
03
2019
pubmed:
23
4
2019
medline:
6
5
2020
entrez:
23
4
2019
Statut:
ppublish
Résumé
Ghrelin is a peptide mainly produced and secreted by the stomach. Since its discovery, the impact of ghrelin on the regulation of food intake has been the most studied function of this hormone; however, ghrelin affects a wide range of physiological systems, many of which are controlled by the hypothalamic paraventricular nucleus (PVN). Several pathways may mediate the effects of ghrelin on PVN neurons, such as direct or indirect effects mediated by circumventricular organs and/or the arcuate nucleus. The ghrelin receptor is expressed in PVN neurons, and the peripheral or intracerebroventricular administration of ghrelin affects PVN neuronal activity. Intra-PVN application of ghrelin increases food intake and decreases fat oxidation, which chronically contribute to the increased adiposity. Additionally, ghrelin modulates the neuroendocrine axes controlled by the PVN, increasing the release of vasopressin and oxytocin by magnocellular neurons and corticotropin-releasing hormone by neuroendocrine parvocellular neurons, while possibly inhibiting the release of thyrotropin-releasing hormone. Thus, the PVN is an important target for the actions of ghrelin. Our review discusses the mechanisms of ghrelin actions in the PVN, and its potential implications for energy balance, neuroendocrine, and integrative physiological control.
Substances chimiques
Ghrelin
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
81-97Informations de copyright
© 2019 New York Academy of Sciences.
Références
Yi, C.-X. & M.H. Tschöp. 2012. Brain-gut-adipose-tissue communication pathways at a glance. Dis. Model. Mech. 5: 583-587.
Côté, C.D., M. Zadeh-Tahmasebi, B.A. Rasmussen, et al. 2014. Hormonal signaling in the gut. J. Biol. Chem. 289: 11642-11649.
Morton, G.J., D.E. Cummings, D.G. Baskin, et al. 2006. Central nervous system control of food intake and body weight. Nature 443: 289-295.
Kojima, M., H. Hosoda, Y. Date, et al. 1999. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402: 656-660.
Tschöp, M., D.L. Smiley, M.L. Heiman, et al. 2000. Ghrelin induces adiposity in rodents. Nature 407: 908-913.
Gahete, M.D., J. Córdoba-Chacón, R. Salvatori, et al. 2010. Metabolic regulation of ghrelin O-acyl transferase (GOAT) expression in the mouse hypothalamus, pituitary, and stomach. Mol. Cell. Endocrinol. 317: 154-160.
Morash, M.G., J. Gagnon, S. Nelson, et al. 2010. Tissue distribution and effects of fasting and obesity on the ghrelin axis in mice. Regul. Pept. 163: 62-73.
Wren, A.M., C.J. Small, C.R. Abbott, et al. 2001. Ghrelin causes hyperphagia and obesity in rats. Diabetes 50: 2540-2547.
Drazen, D.L., T.P. Vahl, D.A. D'Alessio, et al. 2006. Effects of a fixed meal pattern on ghrelin secretion: evidence for a learned response independent of nutrient status. Endocrinology 147: 23-30.
Callahan, H.S., D.E. Cummings, M.S. Pepe, et al. 2004. Postprandial suppression of plasma ghrelin level is proportional to ingested caloric load but does not predict intermeal interval in humans. J. Clin. Endocrinol. Metab. 89: 1319-1324.
Wren, A.M., C.J. Small, H.L. Ward, et al. 2000. The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology 141: 4325-4328.
Nakazato, M., N. Murakami, Y. Date, et al. 2001. A role for ghrelin in the central regulation of feeding. Nature 409: 194-198.
Asakawa, A., A. Inui, O. Kaga, et al. 2001. Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin. Gastroenterology 120: 337-345.
Tolle, V., M.-H.H. Bassant, P. Zizzari, et al. 2002. Ultradian rhythmicity of ghrelin secretion in relation with GH, feeding behavior, and sleep-wake patterns in rats. Endocrinology 143: 1353-1361.
Cabral, A., O. Suescun, J.M. Zigman, et al. 2012. Ghrelin indirectly activates hypophysiotropic CRF neurons in rodents. PLoS One 7: 1-10.
Pekary, A.E. & A. Sattin. 2012. Rapid modulation of TRH and TRH-like peptide release in rat brain and peripheral tissues by ghrelin and 3-TRP-ghrelin. Peptides 36: 157-167.
Currie, P.J., A. Mirza, R. Fuld, et al. 2005. Ghrelin is an orexigenic and metabolic signaling peptide in the arcuate and paraventricular nuclei. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289: R353-R358.
Müller, T.D., R. Nogueiras, M.L. Andermann, et al. 2015. Ghrelin. Mol. Metab. 4: 437-460.
Rioux, V. 2016. Fatty acid acylation of proteins: specific roles for palmitic, myristic and caprylic acids. OCL 23: D304.
Hosoda, H., M. Kojima, H. Matsuo, et al. 2000. Ghrelin and des-acyl ghrelin: two major forms of rat ghrelin peptide in gastrointestinal tissue. Biochem. Biophys. Res. Commun. 279: 909-913.
De Vriese, C., F. Gregoire, R. Lema-Kisoka, et al. 2004. Ghrelin degradation by serum and tissue homogenates: identification of the cleavage sites. Endocrinology 145: 4997-5005.
Satou, M., Y. Nishi, J. Yoh, et al. 2010. Identification and characterization of acyl-protein thioesterase 1/lysophospholipase I as a ghrelin deacylation/lysophospholipid hydrolyzing enzyme in fetal bovine serum and conditioned medium. Endocrinology 151: 4765-4775.
Stark, R., V.V. Santos, B. Geenen, et al. 2016. Des-acyl ghrelin and ghrelin O-acyltransferase regulate hypothalamic-pituitary-adrenal axis activation and anxiety in response to acute stress. Endocrinology 157: 3946-3957.
Fernandez, G., A. Cabral, M.P. Cornejo, et al. 2016. Des-acyl ghrelin directly targets the arcuate nucleus in a ghrelin-receptor independent manner and impairs the orexigenic effect of ghrelin. J. Neuroendocrinol. 28: https://doi.org/10.1111/jne.12349.
Ferrini, F., C. Salio, L. Lossi, et al. 2009. Ghrelin in central neurons. Curr. Neuropharmacol. 7: 37-49.
Malagón, M.M., R.M. Luque, E. Ruiz-Guerrero, et al. 2003. Intracellular signaling mechanisms mediating ghrelin-stimulated growth hormone release in somatotropes. Endocrinology 144: 5372-5380.
Kageyama, K., Y. Kumata, K. Akimoto, et al. 2011. Ghrelin stimulates corticotropin-releasing factor and vasopressin gene expression in rat hypothalamic 4B cells. Stress 14: 520-529.
Holst, B., A. Cygankiewicz, T.H. Jensen, et al. 2003. High constitutive signaling of the ghrelin receptor-identification of a potent inverse agonist. Mol. Endocrinol. 17: 2201-2210.
López Soto, E.J., F. Agosti, A. Cabral, et al. 2015. Constitutive and ghrelin-dependent GHSR1a activation impairs CaV2.1 and CaV2.2 currents in hypothalamic neurons. J. Gen. Physiol. 146: 205-219.
Guan, X.M., H. Yu, O.C. Palyha, et al. 1997. Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Brain Res. Mol. Brain Res. 48: 23-29.
Zigman, J.M., J.E. Jones, C.E. Lee, et al. 2006. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J. Comp. Neurol. 494: 528-548.
Mani, B.K., A.K. Walker, E.J. Lopez Soto, et al. 2014. Neuroanatomical characterization of a growth hormone secretagogue receptor-green fluorescent protein reporter mouse. J. Comp. Neurol. 522: 3644-3666.
Sutton, A.K., M.G. Myers & D.P. Olson. 2016. The role of PVH circuits in leptin action and energy balance. Annu. Rev. Physiol. 78: 207-221.
Harrold, J.A., T. Dovey, X.-J.J. Cai, et al. 2008. Autoradiographic analysis of ghrelin receptors in the rat hypothalamus. Brain Res. 1196: 59-64.
Mitchell, V., S. Bouret, J.C. Beauvillain, et al. 2001. Comparative distribution of mRNA encoding the growth hormone secretagogue-receptor (GHS-R) in Microcebus murinus (Primate, lemurian) and rat forebrain and pituitary. J. Comp. Neurol. 429: 469-489.
Yokote, R., M. Sato, S. Matsubara, et al. 1998. Molecular cloning and gene expression of growth hormone-releasing peptide receptor in rat tissues. Peptides 19: 15-20.
Perello, M., M.M. Scott, I. Sakata, et al. 2012. Functional implications of limited leptin receptor and ghrelin receptor coexpression in the brain. J. Comp. Neurol. 520: 281-294.
Ferguson, A.V., K.J. Latchford & W.K. Samson. 2008. The paraventricular nucleus of the hypothalamus-a potential target for integrative treatment of autonomic dysfunction. Expert Opin. Ther. Targets 12: 717-727.
Mecawi, A.S., S.G. Ruginsk, L.L.K. Elias, et al. 2015. Neuroendocrine regulation of hydromineral homeostasis. Compr. Physiol. 5: 1465-1516.
Joseph-Bravo, P., L. Jaimes-Hoy, R.-M. Uribe, et al. 2015. 60 Years of neuroendocrinology: TRH, the first hypophysiotropic releasing hormone isolated: control of the pituitary-thyroid axis. J. Endocrinol. 226: T85-T100.
Keller-Wood, M. 2015. Hypothalamic-pituitary-adrenal axis-feedback control. Compr. Physiol. 5: 1161-1182.
Stern, J.E. 2001. Electrophysiological and morphological properties of pre-autonomic neurones in the rat hypothalamic paraventricular nucleus. J. Physiol. 537: 161-177.
Luther, J.A., S.S. Daftary, C. Boudaba, et al. 2002. Neurosecretory and non-neurosecretory parvocellular neurones of the hypothalamic paraventricular nucleus express distinct electrophysiological properties. J. Neuroendocrinol. 14: 929-932.
Dos-Santos, R.C., H.M. Grover, L.C. Reis, et al. 2018. Electrophysiological effects of ghrelin in the hypothalamic paraventricular nucleus neurons. Front. Cell. Neurosci. 12: 275.
Olson, B.R., M.D. Drutarosky, M.S. Chow, et al. 1991. Oxytocin and an oxytocin agonist administered centrally decrease food intake in rats. Peptides 12: 113-118.
Wang, J., S. Ling, T. Usami, et al. 2007. Effects of ghrelin, corticotrophin-releasing hormone, and melanotan-II on food intake in rats with paraventricular nucleus lesions. Exp. Clin. Endocrinol. Diabetes 115: 669-673.
Steward, C.A., T.L. Horan, S. Schuhler, et al. 2003. Central administration of thyrotropin releasing hormone (TRH) and related peptides inhibits feeding behavior in the Siberian hamster. Neuroreport 14: 687-691.
Schuhler, S., A. Warner, N. Finney, et al. 2007. Thyrotrophin-releasing hormone decreases feeding and increases body temperature, activity and oxygen consumption in Siberian hamsters. J. Neuroendocrinol. 19: 239-249.
Wang, J., Z. Yuan, J. Dong, et al. 2013. Neuropeptide Y loses its orexigenic effect in rats with lesions of the hypothalamic paraventricular nucleus. Endocr. Res. 38: 8-14.
Luo, S.X., J. Huang, Q. Li, et al. 2018. Regulation of feeding by somatostatin neurons in the tuberal nucleus. Science 361: 76-81.
Voigt, J.-P. & H. Fink. 2015. Serotonin controlling feeding and satiety. Behav. Brain Res. 277: 14-31.
Ter Horst, G.J., P. de Boer, P.G. Luiten, et al. 1989. Ascending projections from the solitary tract nucleus to the hypothalamus. A Phaseolus vulgaris lectin tracing study in the rat. Neuroscience 31: 785-797.
Schwartz, M.W., S.C. Woods, D. Porte, et al. 2000. Central nervous system control of food intake. Nature 404: 661-671.
Cowley, M.A., R.G. Smith, S. Diano, et al. 2003. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 37: 649-661.
Menyhért, J., G. Wittmann, E. Hrabovszky, et al. 2006. Distribution of ghrelin-immunoreactive neuronal networks in the human hypothalamus. Brain Res. 1125: 31-36.
Cabral, A., E.J. López Soto, J. Epelbaum, et al. 2017. Is ghrelin synthesized in the central nervous system? Int. J. Mol. Sci. 18. https://doi.org/10.3390/ijms18030638.
Cabral, A., P.N. De Francesco & M. Perello. 2015. Brain circuits mediating the orexigenic action of peripheral ghrelin: narrow gates for a vast kingdom. Front. Endocrinol. (Lausanne) 6: 44.
Perello, M., A. Cabral, M.P. Cornejo, et al. 2018. Brain accessibility delineates the central effects of circulating ghrelin. J. Neuroendocrinol. e12677. https://doi.org/10.1111/jne.12677.
Abbott, N.J., A.A.K. Patabendige, D.E.M. Dolman, et al. 2010. Structure and function of the blood-brain barrier. Neurobiol. Dis. 37: 13-25.
Banks, W.A., M. Tschöp, S.M. Robinson, et al. 2002. Extent and direction of ghrelin transport across the blood-brain barrier is determined by its unique primary structure. J. Pharmacol. Exp. Ther. 302: 822-827.
Saunders, N.R., C.J. Ek, M.D. Habgood, et al. 2008. Barriers in the brain: a renaissance? Trends Neurosci. 31: 279-286.
Prevot, V., B. Dehouck, A. Sharif, et al. 2018. The versatile tanycyte: a hypothalamic integrator of reproduction and energy metabolism. Endocr. Rev. 39: 333-368.
Lazcano, I., A. Cabral, R.M. Uribe, et al. 2015. Fasting enhances pyroglutamyl peptidase II activity in tanycytes of the mediobasal hypothalamus of male adult rats. Endocrinology 156: 2713-2723.
Cabral, A., G. Fernandez & M. Perello. 2013. Analysis of brain nuclei accessible to ghrelin present in the cerebrospinal fluid. Neuroscience 253: 406-415.
Grouselle, D., E. Chaillou, A. Caraty, et al. 2008. Pulsatile cerebrospinal fluid and plasma ghrelin in relation to growth hormone secretion and food intake in the sheep. J. Neuroendocrinol. 20: 1138-1146.
Uriarte, M., P.N. De Francesco, G. Fernandez, et al. 2018. Evidence supporting a role for the blood-cerebrospinal fluid barrier transporting circulating ghrelin into the brain. Mol. Neurobiol. 3: 3323-3331.
Schaeffer, M., F. Langlet, C. Lafont, et al. 2013. Rapid sensing of circulating ghrelin by hypothalamic appetite-modifying neurons. Proc. Natl. Acad. Sci. USA 110: 1512-1517.
Zhang, X. & A.N. Van Den Pol. 2016. Hypothalamic arcuate nucleus tyrosine hydroxylase neurons play orexigenic role in energy homeostasis. Nat. Neurosci. 19: 1341-1347.
Fry, M. & A.V. Ferguson. 2010. Ghrelin: central nervous system sites of action in regulation of energy balance. Int. J. Pept. 2010. https://doi.org/10.1155/2010/616757.
Date, Y., N. Murakami, K. Toshinai, et al. 2002. The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology 123: 1120-1128.
Xu, J., A.M. Bernstein, A. Wong, et al. 2016. P2 × 4 receptor reporter mice: sparse brain expression and feeding-related presynaptic facilitation in the arcuate nucleus. J. Neurosci. 36: 8902-8920.
Cyr, N.E., A.M. Toorie, J.S. Steger, et al. 2013. Mechanisms by which the orexigen NPY regulates anorexigenic α-MSH and TRH. Am. J. Physiol. Endocrinol. Metab. 304: E640-E650.
Miyata, S. 2015. New aspects in fenestrated capillary and tissue dynamics in the sensory circumventricular organs of adult brains. Front. Neurosci. 9: 390.
Pulman, K.J., W.M. Fry, G.T. Cottrell, et al. 2006. The subfornical organ: a central target for circulating feeding signals. J. Neurosci. 26: 2022-2030.
Price, C.J., T.D. Hoyda & A.V. Ferguson. 2008. The area postrema: a brain monitor and integrator of systemic autonomic state. Neuroscientist 14: 182-194.
Fry, M. & A.V. Ferguson. 2009. Ghrelin modulates electrical activity of area postrema neurons. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296: R485-R492.
Cabral, A., M.P. Cornejo, G. Fernandez, et al. 2017. Circulating ghrelin acts on GABA neurons of the area postrema and mediates gastric emptying in male mice. Endocrinology 158: 1436-1449.
Sakata, I., M. Yamazaki, K. Inoue, et al. 2003. Growth hormone secretagogue receptor expression in the cells of the stomach-projected afferent nerve in the rat nodose ganglion. Neurosci. Lett. 342: 183-186.
Rüter, J., P. Kobelt, J.J. Tebbe, et al. 2003. Intraperitoneal injection of ghrelin induces Fos expression in the paraventricular nucleus of the hypothalamus in rats. Brain Res. 991: 26-33.
Kobelt, P., J.J. Tebbe, I. Tjandra, et al. 2005. CCK inhibits the orexigenic effect of peripheral ghrelin. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288: R751-R758.
Kobelt, P., M. Goebel, A. Stengel, et al. 2006. Bombesin, but not amylin, blocks the orexigenic effect of peripheral ghrelin. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291: R903-R913.
Kobelt, P., A.-S. Wisser, A. Stengel, et al. 2008. Peripheral injection of ghrelin induces Fos expression in the dorsomedial hypothalamic nucleus in rats. Brain Res. 1204: 77-86.
Pirnik, Z., J. Bundziková, M. Holubová, et al. 2011. Ghrelin agonists impact on Fos protein expression in brain areas related to food intake regulation in male C57BL/6 mice. Neurochem. Int. 59: 889-895.
Kuo, Y.-T., J.R.C. Parkinson, O.B. Chaudhri, et al. 2007. The temporal sequence of gut peptide CNS interactions tracked in vivo by magnetic resonance imaging. J. Neurosci. 27: 12341-12348.
Sárvári, M., P. Kocsis, L. Deli, et al. 2014. Ghrelin modulates the fMRI BOLD response of homeostatic and hedonic brain centers regulating energy balance in the rat. PLoS One 9: e97651.
Cabral, A., E. Portiansky, E. Sánchez-Jaramillo, et al. 2016. Ghrelin activates hypophysiotropic corticotropin-releasing factor neurons independently of the arcuate nucleus. Psychoneuroendocrinology 67: 27-39.
Thomas, M.A., V. Ryu & T.J. Bartness. 2016. Central ghrelin increases food foraging/hoarding that is blocked by GHSR antagonism and attenuates hypothalamic paraventricular nucleus neuronal activation. Am. J. Physiol. Integr. Comp. Physiol. 310: R275-R285.
Olszewski, P.K., E.M. Bomberg, A. Martell, et al. 2007. Intraventricular ghrelin activates oxytocin neurons: implications in feeding behavior. Neuroreport 18: 499-503.
Scott, V., D.M. McDade & S.M. Luckman. 2007. Rapid changes in the sensitivity of arcuate nucleus neurons to central ghrelin in relation to feeding status. Physiol. Behav. 90: 180-185.
Lawrence, C.B., A.C. Snape, F.M. Baudoin & SM Luckman. 2002. Acute central ghrelin and GH secretagogues induce feeding and activate brain appetite centers. Endocrinology 143: 155-162.
Olszewski, P.K., M.K. Grace, C.J. Billington, et al. 2003. Hypothalamic paraventricular injections of ghrelin: effect on feeding and c-Fos immunoreactivity. Peptides 24: 919-923.
Shrestha, Y.B.Y., K. Wickwire & S. Giraudo. 2009. Effect of reducing hypothalamic ghrelin receptor gene expression on energy balance. Peptides 30: 1336-1341.
Chen, X., Y.-L. Ge, Z.-Y. Jiang, et al. 2005. Effects of ghrelin on hypothalamic glucose responding neurons in rats. Brain Res. 1055: 131-136.
Kola, B., I. Farkas, M. Christ-Crain, et al. 2008. The orexigenic effect of ghrelin is mediated through central activation of the endogenous cannabinoid system. PLoS One 3: e1797.
Soria-Gómez, E., F. Massa, L. Bellocchio, et al. 2014. Cannabinoid type-1 receptors in the paraventricular nucleus of the hypothalamus inhibit stimulated food intake. Neuroscience 263: 46-53.
Solomon, A., B.A. De Fanti & J. Alfredo Martínez. 2005. Peripheral ghrelin participates in glucostatic feeding mechanisms and in the anorexigenic signalling mediated by CART and CRF neurons. Nutr. Neurosci. 8: 287-295.
Haam, J., K.C. Halmos, S. Di, et al. 2014. Nutritional state-dependent ghrelin activation of vasopressin neurons via retrograde trans-neuronal-glial stimulation of excitatory GABA circuits. J. Neurosci. 34: 6201-6213.
Tucci, S.A., E.K. Rogers, M.M. Korbonits, et al. 2004. The cannabinoid CB1 receptor antagonist SR141716 blocks the orexigenic effects of intrahypothalamic ghrelin. Br. J. Pharmacol. 143: 520-523.
Melis, M.R.R.R., M.S. Mascia, S. Succu, et al. 2002. Ghrelin injected into the paraventricular nucleus of the hypothalamus of male rats induces feeding but not penile erection. Neurosci. Lett. 329: 339-343.
Shrestha, Y.B., K. Wickwire & S.Q. Giraudo. 2004. Action of MT-II on ghrelin-induced feeding in the paraventricular nucleus of the hypothalamus. Neuroreport 15: 1365-1367.
Szentirmai, E., L. Kapás, J.M. Krueger, et al. 2007. Ghrelin microinjection into forebrain sites induces wakefulness and feeding in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292: R575-R585.
Bomberg, E.M., M.K. Grace, M.M. Wirth, et al. 2007. Central ghrelin induces feeding driven by energy needs not by reward. Neuroreport 18: 591-595.
Currie, P.J., C.S. John, M.L. Nicholson, et al. 2010. Hypothalamic paraventricular 5-hydroxytryptamine inhibits the effects of ghrelin on eating and energy substrate utilization. Pharmacol. Biochem. Behav. 97: 152-155.
Currie, P.J., C.D. Coiro, R. Duenas, et al. 2011. Urocortin I inhibits the effects of ghrelin and neuropeptide Y on feeding and energy substrate utilization. Brain Res. 1385: 127-134.
Olszewski, P.K., E.M. Bomberg, M.K. Grace, et al. 2007. α-Melanocyte stimulating hormone and ghrelin: central interaction in feeding control. Peptides 28: 2084-2089.
Abtahi, S., A. Mirza, E. Howell, et al. 2017. Ghrelin enhances food intake and carbohydrate oxidation in a nitric oxide dependent manner. Gen. Comp. Endocrinol. 250: 9-14.
Wauson, S.E.R., K. Sarkodie, L.M. Schuette, et al. 2015. Midbrain raphe 5-HT1A receptor activation alters the effects of ghrelin on appetite and performance in the elevated plus maze. J. Psychopharmacol. 29: 836-844.
Shrestha, Y.B., K. Wickwire & S.Q. Giraudo. 2006. Role of AgRP on ghrelin-induced feeding in the hypothalamic paraventricular nucleus. Regul. Pept. 133: 68-73.
Olszewski, P.K., D. Li, M.K. Grace, et al. 2003. Neural basis of orexigenic effects of ghrelin acting within lateral hypothalamus. Peptides 24: 597-602.
So, M., H. Hashimoto, R. Saito, et al. 2018. Inhibition of ghrelin-induced feeding in rats by pretreatment with a novel dual orexin receptor antagonist. J. Physiol. Sci. 68: 129-136.
Asakawa, A., A. Inui, M. Fujimiya, et al. 2005. Stomach regulates energy balance via acylated ghrelin and desacyl ghrelin. Gut 54: 18-24.
Stevanovic, D.M., A. Grefhorst, A.P.N. Themmen, et al. 2014. Unacylated ghrelin suppresses grelin-induced neuronal activity in the hypothalamus and brainstem of male rats. PLoS One 9: e98180.
Perello, M. & S.L. Dickson. 2015. Ghrelin signalling on food reward: a salient link between the gut and the mesolimbic system. J. Neuroendocrinol. 27: 424-434.
Jewett, D.C., T.W. Lefever, D.P. Flashinski, et al. 2006. Intraparaventricular neuropeptide Y and ghrelin induce learned behaviors that report food deprivation in rats. Neuroreport 17: 733-737.
Patterson, Z.R., T. Parno, A.M. Isaacs, et al. 2013. Interruption of ghrelin signaling in the PVN increases high-fat diet intake and body weight in stressed and non-stressed C57BL6J male mice. Front. Neurosci. 7: 1-7.
Yasuda, T., T. Masaki, T. Kakuma, et al. 2003. Centrally administered ghrelin suppresses sympathetic nerve activity in brown adipose tissue of rats. Neurosci. Lett. 349: 75-78.
Mano-Otagiri, A., H. Ohata, A. Iwasaki-Sekino, et al. 2009. Ghrelin suppresses noradrenaline release in the brown adipose tissue of rats. J. Endocrinol. 201: 341-349.
Currie, P.J., R. Khelemsky, E.M. Rigsbee, et al. 2012. Ghrelin is an orexigenic peptide and elicits anxiety-like behaviors following administration into discrete regions of the hypothalamus. Behav. Brain Res. 226: 96-105.
Abtahi, S., E. Howell, J.T. Salvucci, et al. 2019. Exendin-4 antagonizes the metabolic action of acylated ghrelinergic signaling in the hypothalamic paraventricular nucleus. Gen. Comp. Endocrinol. 270: 75-81.
Wang, Y., F. Chen, H. Shi, et al. 2015. Extrinsic ghrelin in the paraventricular nucleus increases small intestinal motility in rats by activating central growth hormone secretagogue and enteric cholinergic receptors. Peptides 74: 43-49.
Smith, S.M. & W.W. Vale. 2006. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci. 8: 383-395.
Coiro, V., G. Saccani-Jotti, R. Minelli, et al. 2005. Adrenocorticotropin/cortisol and arginine-vasopressin secretory patterns in response to ghrelin in normal men. Neuroendocrinology 81: 103-106.
Arvat, E., M. Maccario, L. Di Vito, et al. 2001. Endocrine activities of ghrelin, a natural growth hormone secretagogue (GHS), in humans: comparison and interactions with hexarelin, a nonnatural peptidyl GHS, and GH-releasing hormone. J. Clin. Endocrinol. Metab. 86: 1169-1174.
Coiro, V., R. Volpi, A. Stella, et al. 2011. Oxytocin does not modify GH, ACTH, cortisol and prolactin responses to ghrelin in normal men. Neuropeptides 45: 139-142.
Asakawa, A., A. Inui, T. Kaga, et al. 2001. A role of ghrelin in neuroendocrine and behavioral responses to stress in mice. Neuroendocrinology 74: 143-147.
Wren, A.M., C.J. Small, C.V. Fribbens, et al. 2002. The hypothalamic mechanisms of the hypophysiotropic action of ghrelin. Neuroendocrinology 76: 316-324.
Mozid, A.M., G. Tringali, M.L. Forsling, et al. 2003. Ghrelin is released from rat hypothalamic explants and stimulates corticotrophin-releasing hormone and arginine-vasopressin. Horm. Metab. Res. 35: 455-459.
Kageyama, K., K. Akimoto, S. Yamagata, et al. 2012. Dexamethasone stimulates the expression of ghrelin and its receptor in rat hypothalamic 4B cells. Regul. Pept. 174: 12-17.
Schmidt, M.V., S. Levine, S. Alam, et al. 2006. Metabolic signals modulate hypothalamic-pituitary-adrenal axis activation during maternal separation of the neonatal mouse. J. Neuroendocrinol. 18: 865-874.
Spencer, S.J., L. Xu, M.A. Clarke, et al. 2012. Ghrelin regulates the hypothalamic-pituitary-adrenal axis and restricts anxiety after acute stress. Biol. Psychiatry 72: 457-465.
Patterson, Z.R., R. Khazall, H. MacKay, et al. 2013. Central ghrelin signaling mediates the metabolic response of C57BL/6 male mice to chronic social defeat stress. Endocrinology 154: 1080-1091.
Chuang, J.-C., M. Perello, I. Sakata, et al. 2011. Ghrelin mediates stress-induced food-reward behavior in mice. J. Clin. Invest. 121: 2684-2692.
Kawakami, A., N. Okada, K. Rokkaku, et al. 2008. Leptin inhibits and ghrelin augments hypothalamic noradrenaline release after stress. Stress 11: 363-369.
Ziko, I., L. Sominsky, S.N. De Luca, et al. 2018. Acylated ghrelin suppresses the cytokine response to lipopolysaccharide and does so independently of the hypothalamic-pituitary-adrenal axis. Brain Behav. Immun. 74: 86-95.
Huang, H.-J., X.-C. Zhu, Q.-Q. Han, et al. 2017. Ghrelin alleviates anxiety- and depression-like behaviors induced by chronic unpredictable mild stress in rodents. Behav. Brain Res. 326: 33-43.
Sominsky, L. & S.J. Spencer. 2014. Eating behavior and stress: a pathway to obesity. Front. Psychol. 5: 1-8.
Hulbert, A.J. 2000. Thyroid hormones and their effects: a new perspective. Biol. Rev. Camb. Philos. Soc. 75: 519-631.
Takaya, K., H. Ariyasu, N. Kanamoto, et al. 2000. Ghrelin strongly stimulates growth hormone release in humans. J. Clin. Endocrinol. Metab. 85: 4908-4911.
Kluge, M., S. Riedl, M. Uhr, et al. 2010. Ghrelin affects the hypothalamus-pituitary-thyroid axis in humans by increasing free thyroxine and decreasing TSH in plasma. Eur. J. Endocrinol. 162: 1059-1065.
Kluge, M., D. Schmidt, M. Uhr, et al. 2013. Ghrelin suppresses nocturnal secretion of luteinizing hormone (LH) and thyroid stimulating hormone (TSH) in patients with major depression. J. Psychiatr. Res. 47: 1236-1239.
Mahmoudi, F., F. Mohsennezhad, H. Khazali, et al. 2011. The effect of central injection of ghrelin and bombesin on mean plasma thyroid hormones concentration. Iran. J. Pharm. Res. 10: 627-632.
Kordi, F. & H. Khazali. 2015. The effect of ghrelin and estradiol on mean concentration of thyroid hormones. Int. J. Endocrinol. Metab. 13: e17988.
Sosić-Jurjević, B., D. Stevanović, V. Milosević, et al. 2009. Central ghrelin affects pituitary-thyroid axis: histomorphological and hormonal study in rats. Neuroendocrinology 89: 327-336.
Caminos, J.E., L.M. Seoane, S.A. Tovar, et al. 2002. Influence of thyroid status and growth hormone deficiency on ghrelin. Eur. J. Endocrinol. 147: 159-163.
Giménez-Palop, O., G. Giménez-Pérez, D. Mauricio, et al. 2005. Circulating ghrelin in thyroid dysfunction is related to insulin resistance and not to hunger, food intake or anthropometric changes. Eur. J. Endocrinol. 153: 73-79.
Riis, A.L.D., T.K. Hansen, N. Møller, et al. 2003. Hyperthyroidism is associated with suppressed circulating ghrelin levels. J. Clin. Endocrinol. Metab. 88: 853-857.
Röjdmark, S., J. Calissendorff, O. Danielsson, et al. 2005. Hunger-satiety signals in patients with Graves’ thyrotoxicosis before, during, and after long-term pharmacological treatment. Endocrine 27: 55-61.
Kokkinos, A., I. Mourouzis, D. Kyriaki, et al. 2007. Possible implications of leptin, adiponectin and ghrelin in the regulation of energy homeostasis by thyroid hormone. Endocrine 32: 30-32.
Guo, F., K. Bakal, Y. Minokoshi, et al. 2004. Leptin signaling targets the thyrotropin-releasing hormone gene promoter in vivo. Endocrinology 145: 2221-2227.
Ghamari-Langroudi, M., K.R. Vella, D. Srisai, et al. 2010. Regulation of thyrotropin-releasing hormone-expressing neurons in paraventricular nucleus of the hypothalamus by signals of adiposity. Mol. Endocrinol. 24: 2366-2381.
Perello, M., R.C. Stuart & E.A. Nillni. 2006. The role of intracerebroventricular administration of leptin in the stimulation of prothyrotropin releasing hormone neurons in the hypothalamic paraventricular nucleus. Endocrinology 147: 3296-3306.
Ishizaki, S., T. Murase, Y. Sugimura, et al. 2002. Role of ghrelin in the regulation of vasopressin release in conscious rats. Endocrinology 143: 1589-1593.
Gálfi, M., M. Radács, Z. Molnár, et al. 2016. Ghrelin-induced enhancement of vasopressin and oxytocin secretion in rat neurohypophyseal cell cultures. J. Mol. Neurosci. 60: 525-530.
Haam, J., I.R. Popescu, L.A. Morton, et al. 2012. GABA is excitatory in adult vasopressinergic neuroendocrine cells. J. Neurosci. 32: 572-582.
Choe, K.Y., S.Y. Han, P. Gaub, et al. 2015. High salt intake increases blood pressure via BDNF-mediated downregulation of KCC2 and impaired baroreflex inhibition of vasopressin neurons. Neuron 85: 549-560.
Kim, Y.-B., Y.S. Kim, W. Bin Kim, et al. 2013. GABAergic excitation of vasopressin neurons: possible mechanism underlying sodium-dependent hypertension. Circ. Res. 113: 1296-1307.
Choe, K.Y., E. Trudel & C.W. Bourque. 2016. Effects of salt loading on the regulation of rat hypothalamic magnocellular neurosecretory cells by ionotropic GABA and glycine receptors. J. Neuroendocrinol. 28. https://doi.org/10.1111/jne.12372.
Hashimoto, H., H. Fujihara, M. Kawasaki, et al. 2007. Centrally and peripherally administered ghrelin potently inhibits water intake in rats. Endocrinology 148: 1638-1647.
Mietlicki, E.G., E.L. Nowak & D. Daniels. 2009. The effect of ghrelin on water intake during dipsogenic conditions. Physiol. Behav. 96: 37-43.
Mao, Y., T. Tokudome & I. Kishimoto. 2016. Ghrelin and blood pressure regulation. Curr. Hypertens. Rep. 18: 15.
Perello, M. & J. Raingo. 2013. Leptin activates oxytocin neurons of the hypothalamic paraventricular nucleus in both control and diet-induced obese rodents. PLoS One 8: e59625.
Zhang, J., S. Liu, M. Tang, et al. 2008. Optimal locations and parameters of gastric electrical stimulation in altering ghrelin and oxytocin in the hypothalamus of rats. Neurosci. Res. 62: 262-269.
Yokoyama, T., T. Saito, T. Ohbuchi, et al. 2009. Ghrelin potentiates miniature excitatory postsynaptic currents in supraoptic magnocellular neurones. J. Neuroendocrinol. 21: 910-920.
Vila, G., M. Riedl, M. Resl, et al. 2009. Systemic administration of oxytocin reduces basal and lipopolysaccharide-induced ghrelin levels in healthy men. J. Endocrinol. 203: 175-179.
Torres, P.J., E.M. Luque, M.F. Ponzio, et al. 2018. The role of intragestational ghrelin on postnatal development and reproductive programming in mice. Reproduction 156: 331-341.
Chouzouris, T.M., E. Dovolou, P. Georgoulias, et al. 2018. Effects of pregnancy and short-lasting acute feed restriction on total ghrelin concentration and metabolic parameters in dairy cattle. Theriogenology 106: 141-148.