TCF21 and AP-1 interact through epigenetic modifications to regulate coronary artery disease gene expression.


Journal

Genome medicine
ISSN: 1756-994X
Titre abrégé: Genome Med
Pays: England
ID NLM: 101475844

Informations de publication

Date de publication:
02 05 2019
Historique:
received: 19 12 2018
accepted: 03 04 2019
entrez: 25 4 2019
pubmed: 25 4 2019
medline: 28 12 2019
Statut: epublish

Résumé

Genome-wide association studies have identified over 160 loci that are associated with coronary artery disease. As with other complex human diseases, risk in coronary disease loci is determined primarily by altered expression of the causal gene, due to variation in binding of transcription factors and chromatin-modifying proteins that directly regulate the transcriptional apparatus. We have previously identified a coronary disease network downstream of the disease-associated transcription factor TCF21, and in work reported here extends these studies to investigate the mechanisms by which it interacts with the AP-1 transcription complex to regulate local epigenetic effects in these downstream coronary disease loci. Genomic studies, including chromatin immunoprecipitation sequencing, RNA sequencing, and protein-protein interaction studies, were performed in human coronary artery smooth muscle cells. We show here that TCF21 and JUN regulate expression of two presumptive causal coronary disease genes, SMAD3 and CDKN2B-AS1, in part by interactions with histone deacetylases and acetyltransferases. Genome-wide TCF21 and JUN binding is jointly localized and particularly enriched in coronary disease loci where they broadly modulate H3K27Ac and chromatin state changes linked to disease-related processes in vascular cells. Heterozygosity at coronary disease causal variation, or genome editing of these variants, is associated with decreased binding of both JUN and TCF21 and loss of expression in cis, supporting a transcriptional mechanism for disease risk. These data show that the known chromatin remodeling and pioneer functions of AP-1 are a pervasive aspect of epigenetic control of transcription, and thus, the risk in coronary disease-associated loci, and that interaction of AP-1 with TCF21 to control epigenetic features, contributes to the genetic risk in loci where they co-localize.

Sections du résumé

BACKGROUND
Genome-wide association studies have identified over 160 loci that are associated with coronary artery disease. As with other complex human diseases, risk in coronary disease loci is determined primarily by altered expression of the causal gene, due to variation in binding of transcription factors and chromatin-modifying proteins that directly regulate the transcriptional apparatus. We have previously identified a coronary disease network downstream of the disease-associated transcription factor TCF21, and in work reported here extends these studies to investigate the mechanisms by which it interacts with the AP-1 transcription complex to regulate local epigenetic effects in these downstream coronary disease loci.
METHODS
Genomic studies, including chromatin immunoprecipitation sequencing, RNA sequencing, and protein-protein interaction studies, were performed in human coronary artery smooth muscle cells.
RESULTS
We show here that TCF21 and JUN regulate expression of two presumptive causal coronary disease genes, SMAD3 and CDKN2B-AS1, in part by interactions with histone deacetylases and acetyltransferases. Genome-wide TCF21 and JUN binding is jointly localized and particularly enriched in coronary disease loci where they broadly modulate H3K27Ac and chromatin state changes linked to disease-related processes in vascular cells. Heterozygosity at coronary disease causal variation, or genome editing of these variants, is associated with decreased binding of both JUN and TCF21 and loss of expression in cis, supporting a transcriptional mechanism for disease risk.
CONCLUSIONS
These data show that the known chromatin remodeling and pioneer functions of AP-1 are a pervasive aspect of epigenetic control of transcription, and thus, the risk in coronary disease-associated loci, and that interaction of AP-1 with TCF21 to control epigenetic features, contributes to the genetic risk in loci where they co-localize.

Identifiants

pubmed: 31014396
doi: 10.1186/s13073-019-0635-9
pii: 10.1186/s13073-019-0635-9
pmc: PMC6480881
doi:

Substances chimiques

Basic Helix-Loop-Helix Transcription Factors 0
CDKN2B protein, human 0
Cyclin-Dependent Kinase Inhibitor p15 0
SMAD3 protein, human 0
Smad3 Protein 0
TCF21 protein, human 0
Transcription Factor AP-1 0

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

23

Subventions

Organisme : NHLBI NIH HHS
ID : R01 HL109512
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01HL109512
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01HL134817
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK107437
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL139478
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01HL145708
Pays : United States
Organisme : NHLBI NIH HHS
ID : K08 HL133375
Pays : United States
Organisme : NHLBI NIH HHS
ID : R33HL120757
Pays : United States
Organisme : NHLBI NIH HHS
ID : F32 HL143847
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01HL139478
Pays : United States
Organisme : NHLBI NIH HHS
ID : R33 HL120757
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01DK107437
Pays : United States
Organisme : NHLBI NIH HHS
ID : R00HL125912
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL134817
Pays : United States
Organisme : NHLBI NIH HHS
ID : R00 HL125912
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL145708
Pays : United States
Organisme : NIDDK NIH HHS
ID : P30 DK116074
Pays : United States

Références

Development. 1999 Dec;126(24):5771-83
pubmed: 10572052
Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9525-30
pubmed: 10944221
Oncogene. 2001 Apr 30;20(19):2438-52
pubmed: 11402339
Science. 2002 Dec 20;298(5602):2378-81
pubmed: 12493912
Dev Dyn. 2003 Mar;226(3):512-22
pubmed: 12619136
Cell. 1992 Feb 7;68(3):507-19
pubmed: 1310896
Development. 2004 Aug;131(16):4095-105
pubmed: 15289436
Mol Endocrinol. 2005 Sep;19(9):2245-57
pubmed: 15919722
J Am Coll Cardiol. 2006 Apr 18;47(8 Suppl):C13-8
pubmed: 16631505
Nature. 2008 Jan 10;451(7175):202-6
pubmed: 18185590
Arterioscler Thromb Vasc Biol. 2009 Oct;29(10):1671-7
pubmed: 19592466
Nature. 2010 Mar 18;464(7287):409-12
pubmed: 20173736
PLoS Genet. 2010 Apr 08;6(4):e1000899
pubmed: 20386740
Nat Genet. 2011 Mar 06;43(4):333-8
pubmed: 21378990
Mol Cell. 2011 Jul 8;43(1):145-55
pubmed: 21726817
Circ Res. 2011 Aug 19;109(5):e27-41
pubmed: 21737788
Protein Cell. 2011 Nov;2(11):889-98
pubmed: 22180088
Development. 2012 Jun;139(12):2139-49
pubmed: 22573622
Dev Biol. 2012 Aug 15;368(2):345-57
pubmed: 22687751
Nat Genet. 2012 Jul 01;44(8):890-4
pubmed: 22751097
Science. 2012 Sep 7;337(6099):1190-5
pubmed: 22955828
BMC Med Genet. 2013 Feb 08;14:23
pubmed: 23394302
Development. 2013 Jun;140(11):2409-21
pubmed: 23637334
PLoS Genet. 2013;9(7):e1003588
pubmed: 23861667
PLoS Genet. 2013;9(7):e1003652
pubmed: 23874238
Nature. 2013 Nov 28;503(7477):487-92
pubmed: 24121437
PLoS Genet. 2014 Mar 27;10(3):e1004263
pubmed: 24676100
Nature. 2015 Feb 19;518(7539):337-43
pubmed: 25363779
Cell. 2014 Dec 4;159(6):1327-40
pubmed: 25480297
N Engl J Med. 2015 Apr 23;372(17):1608-18
pubmed: 25853659
PLoS Genet. 2015 May 28;11(5):e1005202
pubmed: 26020271
PLoS Genet. 2015 May 28;11(5):e1005155
pubmed: 26020946
Atherosclerosis. 2015 Oct;242(2):543-52
pubmed: 26310581
Nat Genet. 2015 Oct;47(10):1121-1130
pubmed: 26343387
Arterioscler Thromb Vasc Biol. 2016 May;36(5):972-83
pubmed: 26966274
Nat Commun. 2016 Jul 08;7:12092
pubmed: 27386823
Sci Rep. 2017 Mar 20;7:44825
pubmed: 28317936
PLoS Genet. 2017 May 8;13(5):e1006750
pubmed: 28481916
PLoS Genet. 2017 May 12;13(5):e1006728
pubmed: 28498854
Nat Genet. 2017 Jul;49(7):1113-1119
pubmed: 28530674
Am J Hum Genet. 2017 Jun 1;100(6):885-894
pubmed: 28552197
Nat Genet. 2017 Sep;49(9):1392-1397
pubmed: 28714974
Nat Genet. 2017 Sep;49(9):1385-1391
pubmed: 28714975
Circ J. 2017 Dec 25;82(1):224-231
pubmed: 28794385
Nature. 2017 Oct 11;550(7675):204-213
pubmed: 29022597
Circ Res. 2018 Feb 2;122(3):433-443
pubmed: 29212778
Mol Cell. 2017 Dec 21;68(6):1067-1082.e12
pubmed: 29272704
Onco Targets Ther. 2018 Jun 19;11:3533-3539
pubmed: 29950858
Am J Hum Genet. 2018 Sep 6;103(3):377-388
pubmed: 30146127
PLoS Genet. 2018 Oct 11;14(10):e1007681
pubmed: 30307970
Cell. 2018 Dec 13;175(7):1796-1810.e20
pubmed: 30528432
Cell. 2019 Mar 7;176(6):1248-1264
pubmed: 30849371
J Hematol Oncol. 2019 Mar 12;12(1):27
pubmed: 30866992
Mol Cell Biol. 1996 Aug;16(8):4312-26
pubmed: 8754832
Curr Opin Cell Biol. 1997 Apr;9(2):240-6
pubmed: 9069263
EMBO J. 1997 Apr 15;16(8):2072-85
pubmed: 9155033
Mol Cell Biol. 1998 Apr;18(4):2218-29
pubmed: 9528793
Mech Dev. 1998 Apr;73(1):23-32
pubmed: 9545521
Mech Dev. 1998 Apr;73(1):33-43
pubmed: 9545526
Mol Cell Biol. 1998 May;18(5):2957-64
pubmed: 9566915
Dev Dyn. 1998 Sep;213(1):105-13
pubmed: 9733105

Auteurs

Quanyi Zhao (Q)

Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, 300 Pasteur Dr., Falk CVRC, Stanford, CA, 94305, USA.

Robert Wirka (R)

Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, 300 Pasteur Dr., Falk CVRC, Stanford, CA, 94305, USA.

Trieu Nguyen (T)

Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, 300 Pasteur Dr., Falk CVRC, Stanford, CA, 94305, USA.

Manabu Nagao (M)

Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, 300 Pasteur Dr., Falk CVRC, Stanford, CA, 94305, USA.

Paul Cheng (P)

Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, 300 Pasteur Dr., Falk CVRC, Stanford, CA, 94305, USA.

Clint L Miller (CL)

Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, 22908, USA.
Center for Public Health Genomics, Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
Center for Public Health Genomics, Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.

Juyong Brian Kim (JB)

Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, 300 Pasteur Dr., Falk CVRC, Stanford, CA, 94305, USA.

Milos Pjanic (M)

Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, 300 Pasteur Dr., Falk CVRC, Stanford, CA, 94305, USA.

Thomas Quertermous (T)

Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, 300 Pasteur Dr., Falk CVRC, Stanford, CA, 94305, USA. tomq1@stanford.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH