Keratin 19-expressing hepatocellular carcinoma and small-duct type intrahepatic cholangiocarcinoma show a similar postoperative clinical course but have distinct genetic features.


Journal

Histopathology
ISSN: 1365-2559
Titre abrégé: Histopathology
Pays: England
ID NLM: 7704136

Informations de publication

Date de publication:
Sep 2019
Historique:
received: 27 12 2018
accepted: 22 04 2019
pubmed: 25 4 2019
medline: 23 2 2020
entrez: 25 4 2019
Statut: ppublish

Résumé

The present study aimed to systematically compare clinicopathological and genetic features between keratin 19 (K19)-expressing hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). Consecutive cases of HCC (n = 430) were classified into K19 Although K19

Identifiants

pubmed: 31017316
doi: 10.1111/his.13884
doi:

Substances chimiques

KRT19 protein, human 0
Keratin-19 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

385-393

Informations de copyright

© 2019 John Wiley & Sons Ltd.

Références

Kawai-Kitahata F, Asahina Y, Tanaka S et al. Comprehensive analyses of mutations and hepatitis B virus integration in hepatocellular carcinoma with clinicopathological features. J. Gastroenterol. 2016; 51; 473-486.
Nault JC, Mallet M, Pilati C et al. High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions. Nat. Commun. 2013; 4; 2218.
Chianchiano P, Pezhouh MK, Kim A et al. Distinction of intrahepatic metastasis from multicentric carcinogenesis in multifocal hepatocellular carcinoma using molecular alterations. Hum. Pathol. 2018; 72; 127-134.
Totoki Y, Tatsuno K, Covington KR et al. Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nat. Genet. 2014; 46; 1267-1273.
Sung WK, Zheng H, Li S et al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat. Genet. 2012; 44; 765-769.
Fujimoto A, Furuta M, Totoki Y et al. Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer. Nat. Genet. 2016; 48; 500-509.
Zhao LH, Liu X, Yan HX et al. Genomic and oncogenic preference of HBV integration in hepatocellular carcinoma. Nat. Commun. 2016; 7; 12992.
Kim H, Choi GH, Na DC et al. Human hepatocellular carcinomas with ‘Stemness’ - related marker expression: keratin 19 expression and a poor prognosis. Hepatology 2011; 54; 1707-1717.
Chan AW, Tong JH, Chan SL et al. Expression of stemness markers (CD133 and EpCAM) in prognostication of hepatocellular carcinoma. Histopathology 2014; 64; 935-950.
Lee CW, Lin SE, Tsai HI et al. Cadherin 17 is related to recurrence and poor prognosis of cytokeratin 19-positive hepatocellular carcinoma. Oncol. Lett. 2018; 15; 559-567.
Shibuya M, Kondo F, Sano K et al. Immunohistochemical study of hepatocyte, cholangiocyte and stem cell markers of hepatocellular carcinoma. J. Hepatobil. Pancreat. Sci. 2011; 18; 537-543.
Lee K, Lee KB, Jung HY et al. The correlation between poor prognosis and increased yes-associated protein 1 expression in keratin 19 expressing hepatocellular carcinomas and cholangiocarcinomas. BMC Cancer 2017; 17; 441.
Lee JI, Lee JW, Kim JM et al. Prognosis of hepatocellular carcinoma expressing cytokeratin 19: comparison with other liver cancers. World J. Gastroenterol. 2012; 18; 4751-4757.
Aishima S, Kuroda Y, Nishihara Y et al. Proposal of progression model for intrahepatic cholangiocarcinoma: clinicopathologic differences between hilar type and peripheral type. Am. J. Surg. Pathol. 2007; 31; 1059-1067.
Liau JY, Tsai JH, Yuan RH et al. Morphological subclassification of intrahepatic cholangiocarcinoma: etiological, clinicopathological, and molecular features. Mod. Pathol. 2014; 27; 1163-1173.
Hayashi A, Misumi K, Shibahara J et al. Distinct clinicopathologic and genetic features of 2 histologic subtypes of intrahepatic cholangiocarcinoma. Am. J. Surg. Pathol. 2016; 40; 1021-1030.
Akita M, Fujikura K, Ajiki T et al. Dichotomy in intrahepatic cholangiocarcinomas based on histologic similarities to hilar cholangiocarcinomas. Mod. Pathol. 2017; 30; 986-997.
Akita M, Sofue K, Fujikura K et al. Histological and molecular characterization of intrahepatic bile duct cancers suggests an expanded definition of perihilar cholangiocarcinoma. HPB (Oxf.) 2018; 21; 226-234.
Huang B, Wu L, Lu XY et al. Small intrahepatic cholangiocarcinoma and hepatocellular carcinoma in cirrhotic livers may share similar enhancement patterns at multiphase dynamic MR Imaging. Radiology 2016; 281; 150-157.
Vilana R, Forner A, Bianchi L et al. Intrahepatic peripheral cholangiocarcinoma in cirrhosis patients may display a vascular pattern similar to hepatocellular carcinoma on contrast-enhanced ultrasound. Hepatology 2010; 51; 2020-2029.
Li R, Cai P, Ma KS et al. Dynamic enhancement patterns of intrahepatic cholangiocarcinoma in cirrhosis on contrast-enhanced computed tomography: risk of misdiagnosis as hepatocellular carcinoma. Sci. Rep. 2016; 6; 26772.
Komuta M, Spee B, Vander Borght S et al. Clinicopathological study on cholangiolocellular carcinoma suggesting hepatic progenitor cell origin. Hepatology 2008; 47; 1544-1556.
Amin MB, Edge S, Greene F eds. AJCC cancer staging manual. 8th ed. New York, NY: Springer, 2017.
Cevik D, Yildiz G, Ozturk M. Common telomerase reverse transcriptase promoter mutations in hepatocellular carcinomas from different geographical locations. World J. Gastroenterol. 2015; 21; 311-317.
Zhang BL, Ji X, Yu LX et al. Somatic mutation profiling of liver and biliary cancer by targeted next generation sequencing. Oncol. Lett. 2018; 16; 6003-6012.
Lee SE, Chang SH, Kim WY et al. Frequent somatic TERT promoter mutations and CTNNB1 mutations in hepatocellular carcinoma. Oncotarget 2016; 25; 69267-69275.
Ding Z, Shi C, Jiang L et al. Oncogenic dependency on β-catenin in liver cancer cell lines correlates with pathway activation. Oncotarget 2017; 8; 114526-114539.
Rebouissou S, Franconi A, Calderaro J et al. Genotype-phenotype correlation of CTNNB1 mutations reveals different ß-catenin activity associated with liver tumor progression. Hepatology 2016; 64; 2047-2061.
Govaere O, Komuta M, Berkers J et al. Keratin 19: a key role player in the invasion of human hepatocellular carcinomas. Gut 2014; 63; 674-685.
Moeini A, Sia D, Zhang Z et al. Mixed hepatocellular cholangiocarcinoma tumors: cholangiolocellular carcinoma is a distinct molecular entity. J. Hepatol. 2017; 66; 952-961.
Joseph NM, Tsokos CG, Umetsu SE et al. Genomic profiling of combined hepatocellular-cholangiocarcinoma reveals similar genetics to hepatocellular carcinoma. J. Pathol. 2019; 248; 164-178. https://doi.org/10.1002/path.5243.

Auteurs

Masayuki Akita (M)

Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Japan.
Department of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan.

Tetsuo Ajiki (T)

Department of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan.

Takumi Fukumoto (T)

Department of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan.

Tomoo Itoh (T)

Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Japan.

Yoh Zen (Y)

Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Japan.
Institute of Liver Studies, King's College Hospital & King's College London, London, UK.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH