XFEL structures of the human MT


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
05 2019
Historique:
received: 28 07 2018
accepted: 26 03 2019
pubmed: 26 4 2019
medline: 22 1 2020
entrez: 26 4 2019
Statut: ppublish

Résumé

The human MT

Identifiants

pubmed: 31019305
doi: 10.1038/s41586-019-1144-0
pii: 10.1038/s41586-019-1144-0
pmc: PMC6589158
mid: NIHMS1525542
doi:

Substances chimiques

2-phenylmelatonin 0
Indenes 0
Ligands 0
Receptor, Melatonin, MT1 0
Receptor, Melatonin, MT2 0
ramelteon 901AS54I69
Melatonin JL5DK93RCL

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

289-292

Subventions

Organisme : NIGMS NIH HHS
ID : R01 GM124152
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM127086
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH112205
Pays : United States
Organisme : NIDA NIH HHS
ID : R21 DA042298
Pays : United States
Organisme : NIDA NIH HHS
ID : R37 DA045657
Pays : United States
Organisme : NIDDK NIH HHS
ID : U24 DK116195
Pays : United States
Organisme : NINDS NIH HHS
ID : F31 NS093917
Pays : United States

Références

Reppert, S. M., Weaver, D.R. & Ebisawa, T. Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron 13, 1177–1185 (1994).
doi: 10.1073/pnas.91.13.6133
Reppert, S. M. et al. Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor. Proc. Natl Acad. Sci. USA 92, 8734–8738 (1995).
doi: 10.1073/pnas.92.19.8734
Liu, J. et al. MT1 and MT2 melatonin receptors: a therapeutic perspective. Annu. Rev. Pharmacol. Toxicol. 56, 361–383 (2016).
doi: 10.1146/annurev-pharmtox-010814-124742
Bonnefond, A. et al. Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat. Genet. 44, 297–301 (2012).
doi: 10.1038/ng.1053
Karamitri, A. et al. Type 2 diabetes-associated variants of the MT2 melatonin receptor affect distinct modes of signaling. Sci. Signal. 11, eaan6622 (2018).
doi: 10.1126/scisignal.aan6622
Kato, K. et al. Neurochemical properties of ramelteon (TAK-375), a selective MT1/MT2 receptor agonist. Neuropharmacology 48, 301–310 (2005).
doi: 10.1016/j.neuropharm.2004.09.007
Ballesteros, J. A. & Weinstein, H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Meth. Neurosci. 25, 366–428 (1995).
doi: 10.1016/S1043-9471(05)80049-7
Stauch, B. et al. Structural basis of ligand recognition at the human MT1 melatonin receptor. Nature https://doi.org/10.1038/s41586-019-1141-3 (2019).
doi: 10.1038/s41586-019-1141-3
White, K. L. et al. Structural connection between activation microswitch and allosteric sodium site in GPCR signaling. Structure 26, 259–269.e5 (2018).
doi: 10.1016/j.str.2017.12.013
Roth, C. B., Hanson, M. A. & Stevens, R. C. Stabilization of the human β2-adrenergic receptor TM4–TM3–TM5 helix interface by mutagenesis of Glu122
doi: 10.1016/j.jmb.2007.12.028
Chun, E. et al. Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure 20, 967–976 (2012).
doi: 10.1016/j.str.2012.04.010
Audet, M. & Bouvier, M. Restructuring G-protein- coupled receptor activation. Cell 151, 14–23 (2012).
doi: 10.1016/j.cell.2012.09.003
Caffrey, M. & Cherezov, V. Crystallizing membrane proteins using lipidic mesophases. Nat. Protocols 4, 706–731 (2009).
doi: 10.1038/nprot.2009.31
Rivara, S., Mor, M., Bedini, A., Spadoni, G. & Tarzia, G. Melatonin receptor agonists: SAR and applications to the treatment of sleep-wake disorders. Curr. Top. Med. Chem. 8, 954–968 (2008).
doi: 10.2174/156802608784936719
Bento, A. P. et al. The ChEMBL bioactivity database: an update. Nucleic Acids Res. 42, D1083–D1090 (2014).
doi: 10.1093/nar/gkt1031
Nonno, R. et al. A new melatonin receptor ligand with mt1-agonist and MT2-antagonist properties. J. Pineal Res. 29, 234–240 (2000).
doi: 10.1034/j.1600-0633.2002.290406.x
Zlotos, D. P., Jockers, R., Cecon, E., Rivara, S. & Witt-Enderby, P. A. MT1 and MT2 melatonin receptors: ligands, models, oligomers, and therapeutic potential. J. Med. Chem. 57, 3161–3185 (2014).
doi: 10.1021/jm401343c
Teh, M. T. & Sugden, D. Comparison of the structure-activity relationships of melatonin receptor agonists and antagonists: lengthening the N-acyl side-chain has differing effects on potency on Xenopus melanophores. Naunyn Schmiedebergs Arch. Pharmacol. 358, 522–528 (1998).
doi: 10.1007/PL00005288
Valentin-Hansen, L. et al. The arginine of the DRY motif in transmembrane segment III functions as a balancing micro-switch in the activation of the β2-adrenergic receptor. J. Biol. Chem. 287, 31973–31982 (2012).
doi: 10.1074/jbc.M112.348565
Spadoni, G. et al. Highly potent and selective MT2 melatonin receptor full agonists from conformational analysis of 1-benzyl-2-acylaminomethyl-tetrahydroquinolines. J. Med. Chem. 58, 7512–7525 (2015).
doi: 10.1021/acs.jmedchem.5b01066
UniProt Consortium, T. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 46, 2699 (2018).
doi: 10.1093/nar/gky092
Alexandrov, A. I., Mileni, M., Chien, E. Y., Hanson, M. A. & Stevens, R. C. Microscale fluorescent thermal stability assay for membrane proteins. Structure 16, 351–359 (2008).
doi: 10.1016/j.str.2008.02.004
Liu, W. et al. Serial femtosecond crystallography of G protein-coupled receptors. Science 342, 1521–1524 (2013).
doi: 10.1126/science.1244142
Weierstall, U. et al. Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat. Commun. 5, 3309 (2014).
doi: 10.1038/ncomms4309
Boutet, S. W. G. J. The Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). New J. Phys. 12, 035024 (2010).
doi: 10.1088/1367-2630/12/3/035024
Hart, P. et al. The CSPAD Megapixel X-ray Camera at LCLS. In X-ray Free-electron Lasers: Beam Diagnostics, Beamline Instrumentation and Applications (eds. S. P. Moeller, S. P. et al.) 85040C–85012 (2012).
Barty, A. et al. Cheetah: software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data. J. Appl. Crystallogr. 47, 1118–1131 (2014).
doi: 10.1107/S1600576714007626
Battye, T. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D 67, 271–281 (2011).
doi: 10.1107/S0907444910048675
Duisenberg, A. J. M. Indexing in single-crystal diffractometry with an obstinate list of reflections. J. Appl. Crystallogr. 25, 92–96 (1992).
doi: 10.1107/S0021889891010634
Kabsch, W. Xds. Acta Crystallogr. D 66, 125–132 (2010).
doi: 10.1107/S0907444909047337
White, T. A. et al. Recent developments in CrystFEL. J. Appl. Crystallogr. 49, 680–689 (2016).
doi: 10.1107/S1600576716004751
Karplus, P. A. & Diederichs, K. Linking crystallographic model and data quality. Science 336, 1030–1033 (2012).
doi: 10.1126/science.1218231
Zimmermann, L. et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430, 2237–2243 (2018).
doi: 10.1016/j.jmb.2017.12.007
Bunkóczi, G. & Read, R. J. Improvement of molecular-replacement models with Sculptor. Acta Crystallogr. D 67, 303–312 (2011).
doi: 10.1107/S0907444910051218
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
doi: 10.1107/S0021889807021206
Zheng, Y. et al. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. Nature 540, 458–461 (2016).
doi: 10.1038/nature20605
Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D 68, 352–367 (2012).
doi: 10.1107/S0907444912001308
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).
doi: 10.1107/S0907444909052925
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
doi: 10.1107/S0907444910007493
Tan, Q. et al. Structure of the CCR5 chemokine receptor–HIV entry inhibitor maraviroc complex. Science 341, 1387–1390 (2013).
doi: 10.1126/science.1241475
Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).
doi: 10.1107/S0907444996012255
BUSTER v. 2.10.2.
Schüttelkopf, A. W. & van Aalten, D. M. PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr. D 60, 1355–1363 (2004).
doi: 10.1107/S0907444904011679
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).
doi: 10.1107/S0907444909042073
The PyMOL Molecular Graphics System. Version 2.0 Schrödinger, LLC.
Jurcik, A. et al. CAVER Analyst 2.0: analysis and visualization of channels and tunnels in protein structures and molecular dynamics trajectories. Bioinformatics 34, 3586–3588 (2018).
doi: 10.1093/bioinformatics/bty386
Abagyan, R. A., Totrov, M. M. & Kuznetsov, D. A. ICM: a new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. J. Comput. Chem. 15, 488–506 (1994).
doi: 10.1002/jcc.540150503

Auteurs

Linda C Johansson (LC)

Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.
Department of Chemistry, University of Southern California, Los Angeles, CA, USA.

Benjamin Stauch (B)

Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.
Department of Chemistry, University of Southern California, Los Angeles, CA, USA.

John D McCorvy (JD)

Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.

Gye Won Han (GW)

Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.
Department of Chemistry, University of Southern California, Los Angeles, CA, USA.

Nilkanth Patel (N)

Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.
Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.

Xi-Ping Huang (XP)

Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Alexander Batyuk (A)

Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.

Cornelius Gati (C)

Bioscience Division, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
Department of Structural Biology, Stanford University, Stanford, CA, USA.

Samuel T Slocum (ST)

Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Chufeng Li (C)

Department of Physics, Arizona State University, Tempe, AZ, USA.
School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA.

Jessica M Grandner (JM)

Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.
Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.

Shuming Hao (S)

Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.
Department of Chemistry, University of Southern California, Los Angeles, CA, USA.

Reid H J Olsen (RHJ)

Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Alexandra R Tribo (AR)

Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Sahba Zaare (S)

Department of Physics, Arizona State University, Tempe, AZ, USA.

Lan Zhu (L)

School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA.

Nadia A Zatsepin (NA)

Department of Physics, Arizona State University, Tempe, AZ, USA.
School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA.

Uwe Weierstall (U)

Department of Physics, Arizona State University, Tempe, AZ, USA.
School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA.

Saïd Yous (S)

Université de Lille, CHU Lille, Inserm, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France.

Raymond C Stevens (RC)

Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.
Department of Chemistry, University of Southern California, Los Angeles, CA, USA.
Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.

Wei Liu (W)

School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA.

Bryan L Roth (BL)

Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. bryan_roth@med.unc.edu.
National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. bryan_roth@med.unc.edu.
Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. bryan_roth@med.unc.edu.

Vsevolod Katritch (V)

Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA. katritch@usc.edu.
Department of Chemistry, University of Southern California, Los Angeles, CA, USA. katritch@usc.edu.
Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA. katritch@usc.edu.

Vadim Cherezov (V)

Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA. cherezov@usc.edu.
Department of Chemistry, University of Southern California, Los Angeles, CA, USA. cherezov@usc.edu.
Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA. cherezov@usc.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH