XFEL structures of the human MT
Crystallization
Diabetes Mellitus, Type 2
/ genetics
Electrons
Humans
Indenes
/ chemistry
Lasers
Ligands
Melatonin
/ analogs & derivatives
Models, Molecular
Molecular Docking Simulation
Molecular Dynamics Simulation
Mutation
Receptor, Melatonin, MT1
/ chemistry
Receptor, Melatonin, MT2
/ chemistry
Structure-Activity Relationship
Substrate Specificity
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
05 2019
05 2019
Historique:
received:
28
07
2018
accepted:
26
03
2019
pubmed:
26
4
2019
medline:
22
1
2020
entrez:
26
4
2019
Statut:
ppublish
Résumé
The human MT
Identifiants
pubmed: 31019305
doi: 10.1038/s41586-019-1144-0
pii: 10.1038/s41586-019-1144-0
pmc: PMC6589158
mid: NIHMS1525542
doi:
Substances chimiques
2-phenylmelatonin
0
Indenes
0
Ligands
0
Receptor, Melatonin, MT1
0
Receptor, Melatonin, MT2
0
ramelteon
901AS54I69
Melatonin
JL5DK93RCL
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
289-292Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM124152
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM127086
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH112205
Pays : United States
Organisme : NIDA NIH HHS
ID : R21 DA042298
Pays : United States
Organisme : NIDA NIH HHS
ID : R37 DA045657
Pays : United States
Organisme : NIDDK NIH HHS
ID : U24 DK116195
Pays : United States
Organisme : NINDS NIH HHS
ID : F31 NS093917
Pays : United States
Références
Reppert, S. M., Weaver, D.R. & Ebisawa, T. Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron 13, 1177–1185 (1994).
doi: 10.1073/pnas.91.13.6133
Reppert, S. M. et al. Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor. Proc. Natl Acad. Sci. USA 92, 8734–8738 (1995).
doi: 10.1073/pnas.92.19.8734
Liu, J. et al. MT1 and MT2 melatonin receptors: a therapeutic perspective. Annu. Rev. Pharmacol. Toxicol. 56, 361–383 (2016).
doi: 10.1146/annurev-pharmtox-010814-124742
Bonnefond, A. et al. Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat. Genet. 44, 297–301 (2012).
doi: 10.1038/ng.1053
Karamitri, A. et al. Type 2 diabetes-associated variants of the MT2 melatonin receptor affect distinct modes of signaling. Sci. Signal. 11, eaan6622 (2018).
doi: 10.1126/scisignal.aan6622
Kato, K. et al. Neurochemical properties of ramelteon (TAK-375), a selective MT1/MT2 receptor agonist. Neuropharmacology 48, 301–310 (2005).
doi: 10.1016/j.neuropharm.2004.09.007
Ballesteros, J. A. & Weinstein, H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Meth. Neurosci. 25, 366–428 (1995).
doi: 10.1016/S1043-9471(05)80049-7
Stauch, B. et al. Structural basis of ligand recognition at the human MT1 melatonin receptor. Nature https://doi.org/10.1038/s41586-019-1141-3 (2019).
doi: 10.1038/s41586-019-1141-3
White, K. L. et al. Structural connection between activation microswitch and allosteric sodium site in GPCR signaling. Structure 26, 259–269.e5 (2018).
doi: 10.1016/j.str.2017.12.013
Roth, C. B., Hanson, M. A. & Stevens, R. C. Stabilization of the human β2-adrenergic receptor TM4–TM3–TM5 helix interface by mutagenesis of Glu122
doi: 10.1016/j.jmb.2007.12.028
Chun, E. et al. Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure 20, 967–976 (2012).
doi: 10.1016/j.str.2012.04.010
Audet, M. & Bouvier, M. Restructuring G-protein- coupled receptor activation. Cell 151, 14–23 (2012).
doi: 10.1016/j.cell.2012.09.003
Caffrey, M. & Cherezov, V. Crystallizing membrane proteins using lipidic mesophases. Nat. Protocols 4, 706–731 (2009).
doi: 10.1038/nprot.2009.31
Rivara, S., Mor, M., Bedini, A., Spadoni, G. & Tarzia, G. Melatonin receptor agonists: SAR and applications to the treatment of sleep-wake disorders. Curr. Top. Med. Chem. 8, 954–968 (2008).
doi: 10.2174/156802608784936719
Bento, A. P. et al. The ChEMBL bioactivity database: an update. Nucleic Acids Res. 42, D1083–D1090 (2014).
doi: 10.1093/nar/gkt1031
Nonno, R. et al. A new melatonin receptor ligand with mt1-agonist and MT2-antagonist properties. J. Pineal Res. 29, 234–240 (2000).
doi: 10.1034/j.1600-0633.2002.290406.x
Zlotos, D. P., Jockers, R., Cecon, E., Rivara, S. & Witt-Enderby, P. A. MT1 and MT2 melatonin receptors: ligands, models, oligomers, and therapeutic potential. J. Med. Chem. 57, 3161–3185 (2014).
doi: 10.1021/jm401343c
Teh, M. T. & Sugden, D. Comparison of the structure-activity relationships of melatonin receptor agonists and antagonists: lengthening the N-acyl side-chain has differing effects on potency on Xenopus melanophores. Naunyn Schmiedebergs Arch. Pharmacol. 358, 522–528 (1998).
doi: 10.1007/PL00005288
Valentin-Hansen, L. et al. The arginine of the DRY motif in transmembrane segment III functions as a balancing micro-switch in the activation of the β2-adrenergic receptor. J. Biol. Chem. 287, 31973–31982 (2012).
doi: 10.1074/jbc.M112.348565
Spadoni, G. et al. Highly potent and selective MT2 melatonin receptor full agonists from conformational analysis of 1-benzyl-2-acylaminomethyl-tetrahydroquinolines. J. Med. Chem. 58, 7512–7525 (2015).
doi: 10.1021/acs.jmedchem.5b01066
UniProt Consortium, T. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 46, 2699 (2018).
doi: 10.1093/nar/gky092
Alexandrov, A. I., Mileni, M., Chien, E. Y., Hanson, M. A. & Stevens, R. C. Microscale fluorescent thermal stability assay for membrane proteins. Structure 16, 351–359 (2008).
doi: 10.1016/j.str.2008.02.004
Liu, W. et al. Serial femtosecond crystallography of G protein-coupled receptors. Science 342, 1521–1524 (2013).
doi: 10.1126/science.1244142
Weierstall, U. et al. Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat. Commun. 5, 3309 (2014).
doi: 10.1038/ncomms4309
Boutet, S. W. G. J. The Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). New J. Phys. 12, 035024 (2010).
doi: 10.1088/1367-2630/12/3/035024
Hart, P. et al. The CSPAD Megapixel X-ray Camera at LCLS. In X-ray Free-electron Lasers: Beam Diagnostics, Beamline Instrumentation and Applications (eds. S. P. Moeller, S. P. et al.) 85040C–85012 (2012).
Barty, A. et al. Cheetah: software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data. J. Appl. Crystallogr. 47, 1118–1131 (2014).
doi: 10.1107/S1600576714007626
Battye, T. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D 67, 271–281 (2011).
doi: 10.1107/S0907444910048675
Duisenberg, A. J. M. Indexing in single-crystal diffractometry with an obstinate list of reflections. J. Appl. Crystallogr. 25, 92–96 (1992).
doi: 10.1107/S0021889891010634
Kabsch, W. Xds. Acta Crystallogr. D 66, 125–132 (2010).
doi: 10.1107/S0907444909047337
White, T. A. et al. Recent developments in CrystFEL. J. Appl. Crystallogr. 49, 680–689 (2016).
doi: 10.1107/S1600576716004751
Karplus, P. A. & Diederichs, K. Linking crystallographic model and data quality. Science 336, 1030–1033 (2012).
doi: 10.1126/science.1218231
Zimmermann, L. et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430, 2237–2243 (2018).
doi: 10.1016/j.jmb.2017.12.007
Bunkóczi, G. & Read, R. J. Improvement of molecular-replacement models with Sculptor. Acta Crystallogr. D 67, 303–312 (2011).
doi: 10.1107/S0907444910051218
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
doi: 10.1107/S0021889807021206
Zheng, Y. et al. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. Nature 540, 458–461 (2016).
doi: 10.1038/nature20605
Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D 68, 352–367 (2012).
doi: 10.1107/S0907444912001308
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).
doi: 10.1107/S0907444909052925
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
doi: 10.1107/S0907444910007493
Tan, Q. et al. Structure of the CCR5 chemokine receptor–HIV entry inhibitor maraviroc complex. Science 341, 1387–1390 (2013).
doi: 10.1126/science.1241475
Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).
doi: 10.1107/S0907444996012255
BUSTER v. 2.10.2.
Schüttelkopf, A. W. & van Aalten, D. M. PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr. D 60, 1355–1363 (2004).
doi: 10.1107/S0907444904011679
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).
doi: 10.1107/S0907444909042073
The PyMOL Molecular Graphics System. Version 2.0 Schrödinger, LLC.
Jurcik, A. et al. CAVER Analyst 2.0: analysis and visualization of channels and tunnels in protein structures and molecular dynamics trajectories. Bioinformatics 34, 3586–3588 (2018).
doi: 10.1093/bioinformatics/bty386
Abagyan, R. A., Totrov, M. M. & Kuznetsov, D. A. ICM: a new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. J. Comput. Chem. 15, 488–506 (1994).
doi: 10.1002/jcc.540150503