TGF-β2 is an exercise-induced adipokine that regulates glucose and fatty acid metabolism.
Journal
Nature metabolism
ISSN: 2522-5812
Titre abrégé: Nat Metab
Pays: Germany
ID NLM: 101736592
Informations de publication
Date de publication:
02 2019
02 2019
Historique:
entrez:
30
4
2019
pubmed:
30
4
2019
medline:
30
4
2019
Statut:
ppublish
Résumé
Exercise improves health and well-being across diverse organ systems, and elucidating mechanisms underlying the beneficial effects of exercise can lead to new therapies. Here, we show that transforming growth factor-β2 (TGF-β2) is secreted from adipose tissue in response to exercise and improves glucose tolerance in mice. We identify TGF-β2 as an exercise-induced adipokine in a gene expression analysis of human subcutaneous adipose tissue biopsies after exercise training. In mice, exercise training increases TGF-β2 in scWAT, serum, and its secretion from fat explants. Transplanting scWAT from exercise-trained wild type mice, but not from adipose tissue-specific Tgfb2-/- mice, into sedentary mice improves glucose tolerance. TGF-β2 treatment reverses the detrimental metabolic effects of high fat feeding in mice. Lactate, a metabolite released from muscle during exercise, stimulates TGF-β2 expression in human adipocytes. Administration of the lactate-lowering agent dichloroacetate during exercise training in mice decreases circulating TGF-β2 levels and reduces exercise-stimulated improvements in glucose tolerance. Thus, exercise training improves systemic metabolism through inter-organ communication with fat via a lactate-TGF-β2-signaling cycle.
Identifiants
pubmed: 31032475
doi: 10.1038/s42255-018-0030-7
pmc: PMC6481955
mid: NIHMS1517151
pii: 10.1038/s42255-018-0030-7
doi:
Substances chimiques
Adipokines
0
Fatty Acids
0
Transforming Growth Factor beta2
0
Glucose
IY9XDZ35W2
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Pagination
291-303Subventions
Organisme : NIDDK NIH HHS
ID : R01 DK102898
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK101043
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK099511
Pays : United States
Organisme : NIDDK NIH HHS
ID : P30 DK036836
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL126705
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK033201
Pays : United States
Organisme : NIDDK NIH HHS
ID : K23 DK114550
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK082659
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK112283
Pays : United States
Organisme : NIDDK NIH HHS
ID : T32 DK007260
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK077097
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL138738
Pays : United States
Organisme : NIDDK NIH HHS
ID : K01 DK111714
Pays : United States
Organisme : NIDDK NIH HHS
ID : F32 DK102320
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL145064
Pays : United States
Commentaires et corrections
Type : CommentIn
Déclaration de conflit d'intérêts
Competing financial interests The authors have declared that no conflict of interest exists.
Références
Stanford, K. I. & Goodyear, L. J. Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake in skeletal muscle. Adv. Physiol. Educ. 38, 308–314 (2014).
doi: 10.1152/advan.00080.2014
Fiuza-Luces, C., Garatachea, N., Berger, N. A. & Lucia, A. Exercise is the real polypill. Physiology 28, 330–358 (2013).
doi: 10.1152/physiol.00019.2013
Booth, F. W., Roberts, C. K. & Laye, M. J. Lack of exercise is a major cause of chronic diseases. Compr. Physiol. 2, 1143–1211 (2012).
pubmed: 23798298
pmcid: 4241367
Colberg, S. R. et al. Exercise and Type 2 Diabetes: The American College of Sports Medicine and the American Diabetes Association: joint position statement executive summary. Diabetes Care 33, e147–67 (2010).
doi: 10.2337/dc10-9990
Gollisch, K. S. C. et al. Effects of exercise training on subcutaneous and visceral adipose tissue in normal- and high-fat diet-fed rats. Am. J. Physiol. Endocrinol. Metab. 297, 495–504 (2009).
doi: 10.1152/ajpendo.90424.2008
Stanford, K. I. & Goodyear, L. J. Muscle–adipose tissue cross talk. Cold Spring Harb. Perspect. Med. 4, a029801 (2017).
Craig, B. W., Hammons, G. T., Garthwaite, S. M., Jarett, L. & Holloszy, J. O. Adaptation of fat cells to exercise: response of glucose uptake and oxidation to insulin. J. Appl. Physiol. 51, 1500–1506 (1981).
doi: 10.1152/jappl.1981.51.6.1500
You, T., Arsenis, N. C., Disanzo, B. L. & Lamonte, M. J. Effects of exercise training on chronic inflammation in obesity: current evidence and potential mechanisms. Sports Med. 43, 243–256 (2013).
doi: 10.1007/s40279-013-0023-3
Porter, J. W. et al. Anti-inflammatory effects of exercise training in adipose tissue do not require FGF21. J. Endocrinol. 235, 97–109 (2017).
doi: 10.1530/JOE-17-0190
Kawanishi, N., Yano, H., Yokogawa, Y. & Suzuki, K. Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high-fat-diet-induced obese mice. Exerc. Immunol. Rev. 16, 105–118 (2010).
pubmed: 20839495
Rao, R. R. et al. Meteorin-like is a hormone that regulates immune–adipose interactions to increase beige fat thermogenesis. Cell 157, 1279–1291 (2014).
doi: 10.1016/j.cell.2014.03.065
Bostrom, P. et al. A PGC1 alpha dependent myokine that drives brown fat like development of white fat and thermogenesis. Nature 481, 463–468 (2012).
doi: 10.1038/nature10777
Kajimura, S., Spiegelman, B. M. & Seale, P. Brown and beige fat: physiological roles beyond heat generation. Cell Metab. 22, 546–559 (2015).
doi: 10.1016/j.cmet.2015.09.007
Stallknecht, B., Vinten, J., Ploug, T. & Galbo, H. Increased activities of mitochondrial enzymes in white adipose tissue in trained rats. Am. J. Physiol. 261, E410–E414 (1991).
pubmed: 1653528
Trevellin, E. et al. Exercise training induces mitochondrial biogenesis and glucose uptake in subcutaneous adipose tissue through eNOS-dependent mechanisms. Diabetes 63, 2800–2811 (2014).
doi: 10.2337/db13-1234
Stanford, K. I. et al. A novel role for subcutaneous adipose tissue in exercise-induced improvements in glucose homeostasis. Diabetes 64, 2002–2014 (2015).
doi: 10.2337/db14-0704
Massague, J. TGF-β signal transduction. Annu. Rev. Biochem. 67, 753–791 (1998).
doi: 10.1146/annurev.biochem.67.1.753
LEASK, A. TGF-β signaling and the fibrotic response. FASEB J. 18, 816–827 (2004).
doi: 10.1096/fj.03-1273rev
Li, M. O., Wan, Y. Y. & Flavell, R. A. T. Cell-produced transforming growth factor-β1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity 26, 579–591 (2007).
doi: 10.1016/j.immuni.2007.03.014
Sanford, L. P. et al. TGFβ2 knockout mice have multiple developmental defects that are non-overlapping with other TGFβ knockout phenotypes. Development 124, 2659–2670 (1997).
pubmed: 9217007
pmcid: 3850286
Doetschman, T. et al. Generation of mice with a conditional allele for the transforming growth factor β3 gene. Genesis 50, 59–66 (2012).
doi: 10.1002/dvg.20789
Ishtiaq Ahmed, A. S., Bose, G. C., Huang, L. & Azhar, M. Generation of mice carrying a knockout-first and conditional-ready allele of transforming growth factor β2 gene. Genesis 52, 817–826 (2014).
doi: 10.1002/dvg.22795
Azhar, M. et al. Generation of mice with a conditional allele for transforming growth factor β1 gene. Genesis 47, 423–431 (2009).
doi: 10.1002/dvg.20516
de Martin, R. et al. Complementary DNA for human glioblastoma-derived T cell suppressor factor, a novel member of the transforming growth factor-β gene family. EMBO J. 6, 3673–3677 (1987).
doi: 10.1002/j.1460-2075.1987.tb02700.x
Zhang, H., Yang, P., Zhou, H., Meng, Q. & Huang, X. Involvement of Foxp3-expressing CD4+ CD25+ regulatory T cells in the development of tolerance induced by transforming growth factor-β2-treated antigen-presenting cells. Immunology 124, 304–314 (2008).
doi: 10.1111/j.1365-2567.2007.02769.x
Maheshwari, A. et al. TGF-β2 suppresses macrophage cytokine production and mucosal inflammatory responses in the developing intestine. Gastroenterology 140, 242–253 (2011).
doi: 10.1053/j.gastro.2010.09.043
Shimizu, C. et al. Transforming growth factor-β signaling pathway in patients with Kawasaki disease. Circ. Cardiovasc. Genet. 4, 16–25 (2011).
doi: 10.1161/CIRCGENETICS.110.940858
Yfanti, C. et al. Effect of antioxidant supplementation on insulin sensitivity in response to endurance exercise training. Am. J. Physiol. Endocrinol. Metab. 300, E761–E770 (2011).
doi: 10.1152/ajpendo.00207.2010
Yfanti, C. et al. Antioxidant supplementation does not alter endurance training adaptation. Med. Sci. Sports Exerc. 42, 1388–1395 (2010).
doi: 10.1249/MSS.0b013e3181cd76be
Camon, E. The Gene Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with Gene Ontology. Nucleic Acids Res. 32, 262D–266D (2004).
doi: 10.1093/nar/gkh021
Motiani, P. et al. Decreased insulin-stimulated brown adipose tissue glucose uptake after short-term exercise training in healthy middle aged men. Diabetes Obes. Metab. 19, 1379–1388 (2017).
doi: 10.1111/dom.12947
Schulz, T. J. et al. Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature 495, 379–383 (2013).
doi: 10.1038/nature11943
Rasbach, Ka et al. PGC-1α regulates a HIF2α-dependent switch in skeletal muscle fiber types. Proc. Natl Acad. Sci. USA 107, 21866–21871 (2010).
doi: 10.1073/pnas.1016089107
Wu, Z. et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115–124 (1999).
doi: 10.1016/S0092-8674(00)80611-X
Cohen, P. et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 156, 304–316 (2014).
doi: 10.1016/j.cell.2013.12.021
Tsunoda, T. & Takagi, T. Estimating transcription factor bindability on DNA. Bioinformatics 15, 622–630 (1999).
doi: 10.1093/bioinformatics/15.7.622
Benatti, F. B. & Pedersen, B. K. Exercise as an anti-inflammatory therapy for rheumatic diseases–myokine regulation. Nat. Rev. Rheumatol. 11, 86–97 (2014).
doi: 10.1038/nrrheum.2014.193
Stacpoole, P. W., Nagaraja, N. V. & Hutson, A. D. Efficacy of dichloroacetate as a lactate-lowering drug. J. Clin. Pharmacol. 43, 683–691 (2003).
doi: 10.1177/0091270003254637
Goodwin, M. L., Harris, J. E., Hernández, A. & Gladden, L. B. Blood lactate measurements and analysis during exercise: a guide for clinicians. J. Diabetes Sci. Technol. 1, 558–569 (2007).
doi: 10.1177/193229680700100414
Hashimoto, T., Hussien, R., Oommen, S., Gohil, K. & Brooks, G. Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis. FASEB J. 21, 2602–2612 (2007).
doi: 10.1096/fj.07-8174com
Carrière, A. et al. Browning of white adipose cells by intermediate metabolites: an adaptive mechanism to alleviate redox pressure. Diabetes 63, 3253–3265 (2014).
doi: 10.2337/db13-1885
Gulick, T., Cresci, S., Caira, T., Moore, D. D. & Kelly, D. P. The peroxisome proliferator-activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression. Proc. Natl Acad. Sci. USA 91, 11012–11016 (1994).
doi: 10.1073/pnas.91.23.11012
Ahmadian, M. et al. PPARγ signaling and metabolism: the good, the bad and the future. Nat. Med. 99, 557–566 (2013).
doi: 10.1038/nm.3159
Li, P., Zhu, Z., Lu, Y. & Granneman, J. G. Metabolic and cellular plasticity in white adipose tissue II: role of peroxisome proliferator-activated receptor-α. Am. J. Physiol. Endocrinol. Metab. 289, E617–E626 (2005).
doi: 10.1152/ajpendo.00010.2005
Schenk, S., Saberi, M. & Olefsky, J. M. Insulin sensitivity: modulation by nutrients and inflammation. J. Clin. Investig. 118, 2992–3002 (2008).
doi: 10.1172/JCI34260
Greenberg, A. S. & Obin, M. S. Obesity and the role of adipose tissue in inflammation and metabolism. Am. J. Clin. Nutr. 83, 461–465 (2006).
doi: 10.1093/ajcn/83.2.461S
Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003).
doi: 10.1172/JCI200319451
Gleeson, M. et al. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat. Rev. Immunol. 11, 607–315 (2011).
doi: 10.1038/nri3041
Bradley, R. L., Jeon, J. Y., Liu, F. & Maratos-Flier, E. Voluntary exercise improves insulin sensitivity and adipose tissue inflammation in diet-induced obese mice. Am. J. Physiol. Endocrinol. Metab. 295, E586–E594 (2008).
doi: 10.1152/ajpendo.00309.2007
de Martin, R. et al. Complementary DNA for human glioblastoma-derived T cell suppressor factor, a novel member of the transforming growth factor-β gene family. EMBO J. 6, 3673–3677 (1987).
doi: 10.1002/j.1460-2075.1987.tb02700.x
Xue, R. et al. Clonal analyses and gene profiling identify genetic biomarkers of the thermogenic potential of human brown and white preadipocytes. Nat. Med. 21, 760–768 (2015).
doi: 10.1038/nm.3881
Shamsi, F. & Tseng, Y. H. Protocols for generation of immortalized human brown and white preadipocyte cell lines. Methods Mol. Biol. 1566, 77–85 (2017).
doi: 10.1007/978-1-4939-6820-6_8
Hoque, R., Farooq, A., Ghani, A., Gorelick, F. & Mehal, W. Z. Lactate reduces liver and pancreatic injury in toll-like receptor- and inflammasome-mediated inflammation via gpr81-mediated suppression of innate immunity. Gastroenterology 146, 1763–1774 (2014).
doi: 10.1053/j.gastro.2014.03.014
Ferré, P., Leturque, A., Burnol, A. F., Penicaud, L. & Girard, J .A. A method to quantify glucose utilization in vivo in skeletal muscle and white adipose tissue of the anaesthetized rat. Biochem. J. 228, 103–110 (1985).
doi: 10.1042/bj2280103
Kramer, H. F. et al. AS160 regulates insulin- and contraction-stimulated glucose uptake in mouse skeletal muscle. J. Biol. Chem. 281, 31478–31485 (2006).
doi: 10.1074/jbc.M605461200
Ho, R. C., Alcazar, O., Fujii, N., Hirshman, M. F. & Goodyear, L. J. p38γ MAPK regulation of glucose transporter expression and glucose uptake in L6 myotubes and mouse skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R342–R349 (2004).
doi: 10.1152/ajpregu.00563.2003
Lynes, M. D. et al. The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue. Nat. Med. 23, 631–637 (2017).
doi: 10.1038/nm.4297
Townsend, K. L. et al. Increased mitochondrial activity in BMP7-treated brown adipocytes, due to increased CPT1- and CD36-mediated fatty acid uptake. Antioxid. Redox Signal. 19, 243–257 (2013).
doi: 10.1089/ars.2012.4536
De Keijzer, M. H., Brandts, R. W. & Brans, P. G. W. Evaluation of a biosensor for the measurement of lactate in whole blood. Clin. Biochem. 32, 109–112 (1999).
doi: 10.1016/S0009-9120(98)00105-2
Li, C. Automating dChip: toward reproducible sharing of microarray data analysis. BMC Bioinformatics 9, 231 (2008).
doi: 10.1186/1471-2105-9-231
Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
doi: 10.1093/nar/gkv007
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
doi: 10.1073/pnas.0506580102
Tian, L. et al. Discovering statistically significant pathways in expression profiling studies. Proc. Natl Acad. Sci. USA 102, 13544–13549 (2005).
doi: 10.1073/pnas.0506577102
Gentleman, R. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).
doi: 10.1186/gb-2004-5-10-r80