TGF-β2 is an exercise-induced adipokine that regulates glucose and fatty acid metabolism.


Journal

Nature metabolism
ISSN: 2522-5812
Titre abrégé: Nat Metab
Pays: Germany
ID NLM: 101736592

Informations de publication

Date de publication:
02 2019
Historique:
entrez: 30 4 2019
pubmed: 30 4 2019
medline: 30 4 2019
Statut: ppublish

Résumé

Exercise improves health and well-being across diverse organ systems, and elucidating mechanisms underlying the beneficial effects of exercise can lead to new therapies. Here, we show that transforming growth factor-β2 (TGF-β2) is secreted from adipose tissue in response to exercise and improves glucose tolerance in mice. We identify TGF-β2 as an exercise-induced adipokine in a gene expression analysis of human subcutaneous adipose tissue biopsies after exercise training. In mice, exercise training increases TGF-β2 in scWAT, serum, and its secretion from fat explants. Transplanting scWAT from exercise-trained wild type mice, but not from adipose tissue-specific Tgfb2-/- mice, into sedentary mice improves glucose tolerance. TGF-β2 treatment reverses the detrimental metabolic effects of high fat feeding in mice. Lactate, a metabolite released from muscle during exercise, stimulates TGF-β2 expression in human adipocytes. Administration of the lactate-lowering agent dichloroacetate during exercise training in mice decreases circulating TGF-β2 levels and reduces exercise-stimulated improvements in glucose tolerance. Thus, exercise training improves systemic metabolism through inter-organ communication with fat via a lactate-TGF-β2-signaling cycle.

Identifiants

pubmed: 31032475
doi: 10.1038/s42255-018-0030-7
pmc: PMC6481955
mid: NIHMS1517151
pii: 10.1038/s42255-018-0030-7
doi:

Substances chimiques

Adipokines 0
Fatty Acids 0
Transforming Growth Factor beta2 0
Glucose IY9XDZ35W2

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Pagination

291-303

Subventions

Organisme : NIDDK NIH HHS
ID : R01 DK102898
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK101043
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK099511
Pays : United States
Organisme : NIDDK NIH HHS
ID : P30 DK036836
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL126705
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK033201
Pays : United States
Organisme : NIDDK NIH HHS
ID : K23 DK114550
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK082659
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK112283
Pays : United States
Organisme : NIDDK NIH HHS
ID : T32 DK007260
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK077097
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL138738
Pays : United States
Organisme : NIDDK NIH HHS
ID : K01 DK111714
Pays : United States
Organisme : NIDDK NIH HHS
ID : F32 DK102320
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL145064
Pays : United States

Commentaires et corrections

Type : CommentIn

Déclaration de conflit d'intérêts

Competing financial interests The authors have declared that no conflict of interest exists.

Références

Stanford, K. I. & Goodyear, L. J. Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake in skeletal muscle. Adv. Physiol. Educ. 38, 308–314 (2014).
doi: 10.1152/advan.00080.2014
Fiuza-Luces, C., Garatachea, N., Berger, N. A. & Lucia, A. Exercise is the real polypill. Physiology 28, 330–358 (2013).
doi: 10.1152/physiol.00019.2013
Booth, F. W., Roberts, C. K. & Laye, M. J. Lack of exercise is a major cause of chronic diseases. Compr. Physiol. 2, 1143–1211 (2012).
pubmed: 23798298 pmcid: 4241367
Colberg, S. R. et al. Exercise and Type 2 Diabetes: The American College of Sports Medicine and the American Diabetes Association: joint position statement executive summary. Diabetes Care 33, e147–67 (2010).
doi: 10.2337/dc10-9990
Gollisch, K. S. C. et al. Effects of exercise training on subcutaneous and visceral adipose tissue in normal- and high-fat diet-fed rats. Am. J. Physiol. Endocrinol. Metab. 297, 495–504 (2009).
doi: 10.1152/ajpendo.90424.2008
Stanford, K. I. & Goodyear, L. J. Muscle–adipose tissue cross talk. Cold Spring Harb. Perspect. Med. 4, a029801 (2017).
Craig, B. W., Hammons, G. T., Garthwaite, S. M., Jarett, L. & Holloszy, J. O. Adaptation of fat cells to exercise: response of glucose uptake and oxidation to insulin. J. Appl. Physiol. 51, 1500–1506 (1981).
doi: 10.1152/jappl.1981.51.6.1500
You, T., Arsenis, N. C., Disanzo, B. L. & Lamonte, M. J. Effects of exercise training on chronic inflammation in obesity: current evidence and potential mechanisms. Sports Med. 43, 243–256 (2013).
doi: 10.1007/s40279-013-0023-3
Porter, J. W. et al. Anti-inflammatory effects of exercise training in adipose tissue do not require FGF21. J. Endocrinol. 235, 97–109 (2017).
doi: 10.1530/JOE-17-0190
Kawanishi, N., Yano, H., Yokogawa, Y. & Suzuki, K. Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high-fat-diet-induced obese mice. Exerc. Immunol. Rev. 16, 105–118 (2010).
pubmed: 20839495
Rao, R. R. et al. Meteorin-like is a hormone that regulates immune–adipose interactions to increase beige fat thermogenesis. Cell 157, 1279–1291 (2014).
doi: 10.1016/j.cell.2014.03.065
Bostrom, P. et al. A PGC1 alpha dependent myokine that drives brown fat like development of white fat and thermogenesis. Nature 481, 463–468 (2012).
doi: 10.1038/nature10777
Kajimura, S., Spiegelman, B. M. & Seale, P. Brown and beige fat: physiological roles beyond heat generation. Cell Metab. 22, 546–559 (2015).
doi: 10.1016/j.cmet.2015.09.007
Stallknecht, B., Vinten, J., Ploug, T. & Galbo, H. Increased activities of mitochondrial enzymes in white adipose tissue in trained rats. Am. J. Physiol. 261, E410–E414 (1991).
pubmed: 1653528
Trevellin, E. et al. Exercise training induces mitochondrial biogenesis and glucose uptake in subcutaneous adipose tissue through eNOS-dependent mechanisms. Diabetes 63, 2800–2811 (2014).
doi: 10.2337/db13-1234
Stanford, K. I. et al. A novel role for subcutaneous adipose tissue in exercise-induced improvements in glucose homeostasis. Diabetes 64, 2002–2014 (2015).
doi: 10.2337/db14-0704
Massague, J. TGF-β signal transduction. Annu. Rev. Biochem. 67, 753–791 (1998).
doi: 10.1146/annurev.biochem.67.1.753
LEASK, A. TGF-β signaling and the fibrotic response. FASEB J. 18, 816–827 (2004).
doi: 10.1096/fj.03-1273rev
Li, M. O., Wan, Y. Y. & Flavell, R. A. T. Cell-produced transforming growth factor-β1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity 26, 579–591 (2007).
doi: 10.1016/j.immuni.2007.03.014
Sanford, L. P. et al. TGFβ2 knockout mice have multiple developmental defects that are non-overlapping with other TGFβ knockout phenotypes. Development 124, 2659–2670 (1997).
pubmed: 9217007 pmcid: 3850286
Doetschman, T. et al. Generation of mice with a conditional allele for the transforming growth factor β3 gene. Genesis 50, 59–66 (2012).
doi: 10.1002/dvg.20789
Ishtiaq Ahmed, A. S., Bose, G. C., Huang, L. & Azhar, M. Generation of mice carrying a knockout-first and conditional-ready allele of transforming growth factor β2 gene. Genesis 52, 817–826 (2014).
doi: 10.1002/dvg.22795
Azhar, M. et al. Generation of mice with a conditional allele for transforming growth factor β1 gene. Genesis 47, 423–431 (2009).
doi: 10.1002/dvg.20516
de Martin, R. et al. Complementary DNA for human glioblastoma-derived T cell suppressor factor, a novel member of the transforming growth factor-β gene family. EMBO J. 6, 3673–3677 (1987).
doi: 10.1002/j.1460-2075.1987.tb02700.x
Zhang, H., Yang, P., Zhou, H., Meng, Q. & Huang, X. Involvement of Foxp3-expressing CD4+ CD25+ regulatory T cells in the development of tolerance induced by transforming growth factor-β2-treated antigen-presenting cells. Immunology 124, 304–314 (2008).
doi: 10.1111/j.1365-2567.2007.02769.x
Maheshwari, A. et al. TGF-β2 suppresses macrophage cytokine production and mucosal inflammatory responses in the developing intestine. Gastroenterology 140, 242–253 (2011).
doi: 10.1053/j.gastro.2010.09.043
Shimizu, C. et al. Transforming growth factor-β signaling pathway in patients with Kawasaki disease. Circ. Cardiovasc. Genet. 4, 16–25 (2011).
doi: 10.1161/CIRCGENETICS.110.940858
Yfanti, C. et al. Effect of antioxidant supplementation on insulin sensitivity in response to endurance exercise training. Am. J. Physiol. Endocrinol. Metab. 300, E761–E770 (2011).
doi: 10.1152/ajpendo.00207.2010
Yfanti, C. et al. Antioxidant supplementation does not alter endurance training adaptation. Med. Sci. Sports Exerc. 42, 1388–1395 (2010).
doi: 10.1249/MSS.0b013e3181cd76be
Camon, E. The Gene Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with Gene Ontology. Nucleic Acids Res. 32, 262D–266D (2004).
doi: 10.1093/nar/gkh021
Motiani, P. et al. Decreased insulin-stimulated brown adipose tissue glucose uptake after short-term exercise training in healthy middle aged men. Diabetes Obes. Metab. 19, 1379–1388 (2017).
doi: 10.1111/dom.12947
Schulz, T. J. et al. Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature 495, 379–383 (2013).
doi: 10.1038/nature11943
Rasbach, Ka et al. PGC-1α regulates a HIF2α-dependent switch in skeletal muscle fiber types. Proc. Natl Acad. Sci. USA 107, 21866–21871 (2010).
doi: 10.1073/pnas.1016089107
Wu, Z. et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115–124 (1999).
doi: 10.1016/S0092-8674(00)80611-X
Cohen, P. et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 156, 304–316 (2014).
doi: 10.1016/j.cell.2013.12.021
Tsunoda, T. & Takagi, T. Estimating transcription factor bindability on DNA. Bioinformatics 15, 622–630 (1999).
doi: 10.1093/bioinformatics/15.7.622
Benatti, F. B. & Pedersen, B. K. Exercise as an anti-inflammatory therapy for rheumatic diseases–myokine regulation. Nat. Rev. Rheumatol. 11, 86–97 (2014).
doi: 10.1038/nrrheum.2014.193
Stacpoole, P. W., Nagaraja, N. V. & Hutson, A. D. Efficacy of dichloroacetate as a lactate-lowering drug. J. Clin. Pharmacol. 43, 683–691 (2003).
doi: 10.1177/0091270003254637
Goodwin, M. L., Harris, J. E., Hernández, A. & Gladden, L. B. Blood lactate measurements and analysis during exercise: a guide for clinicians. J. Diabetes Sci. Technol. 1, 558–569 (2007).
doi: 10.1177/193229680700100414
Hashimoto, T., Hussien, R., Oommen, S., Gohil, K. & Brooks, G. Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis. FASEB J. 21, 2602–2612 (2007).
doi: 10.1096/fj.07-8174com
Carrière, A. et al. Browning of white adipose cells by intermediate metabolites: an adaptive mechanism to alleviate redox pressure. Diabetes 63, 3253–3265 (2014).
doi: 10.2337/db13-1885
Gulick, T., Cresci, S., Caira, T., Moore, D. D. & Kelly, D. P. The peroxisome proliferator-activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression. Proc. Natl Acad. Sci. USA 91, 11012–11016 (1994).
doi: 10.1073/pnas.91.23.11012
Ahmadian, M. et al. PPARγ signaling and metabolism: the good, the bad and the future. Nat. Med. 99, 557–566 (2013).
doi: 10.1038/nm.3159
Li, P., Zhu, Z., Lu, Y. & Granneman, J. G. Metabolic and cellular plasticity in white adipose tissue II: role of peroxisome proliferator-activated receptor-α. Am. J. Physiol. Endocrinol. Metab. 289, E617–E626 (2005).
doi: 10.1152/ajpendo.00010.2005
Schenk, S., Saberi, M. & Olefsky, J. M. Insulin sensitivity: modulation by nutrients and inflammation. J. Clin. Investig. 118, 2992–3002 (2008).
doi: 10.1172/JCI34260
Greenberg, A. S. & Obin, M. S. Obesity and the role of adipose tissue in inflammation and metabolism. Am. J. Clin. Nutr. 83, 461–465 (2006).
doi: 10.1093/ajcn/83.2.461S
Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003).
doi: 10.1172/JCI200319451
Gleeson, M. et al. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat. Rev. Immunol. 11, 607–315 (2011).
doi: 10.1038/nri3041
Bradley, R. L., Jeon, J. Y., Liu, F. & Maratos-Flier, E. Voluntary exercise improves insulin sensitivity and adipose tissue inflammation in diet-induced obese mice. Am. J. Physiol. Endocrinol. Metab. 295, E586–E594 (2008).
doi: 10.1152/ajpendo.00309.2007
de Martin, R. et al. Complementary DNA for human glioblastoma-derived T cell suppressor factor, a novel member of the transforming growth factor-β gene family. EMBO J. 6, 3673–3677 (1987).
doi: 10.1002/j.1460-2075.1987.tb02700.x
Xue, R. et al. Clonal analyses and gene profiling identify genetic biomarkers of the thermogenic potential of human brown and white preadipocytes. Nat. Med. 21, 760–768 (2015).
doi: 10.1038/nm.3881
Shamsi, F. & Tseng, Y. H. Protocols for generation of immortalized human brown and white preadipocyte cell lines. Methods Mol. Biol. 1566, 77–85 (2017).
doi: 10.1007/978-1-4939-6820-6_8
Hoque, R., Farooq, A., Ghani, A., Gorelick, F. & Mehal, W. Z. Lactate reduces liver and pancreatic injury in toll-like receptor- and inflammasome-mediated inflammation via gpr81-mediated suppression of innate immunity. Gastroenterology 146, 1763–1774 (2014).
doi: 10.1053/j.gastro.2014.03.014
Ferré, P., Leturque, A., Burnol, A. F., Penicaud, L. & Girard, J .A. A method to quantify glucose utilization in vivo in skeletal muscle and white adipose tissue of the anaesthetized rat. Biochem. J. 228, 103–110 (1985).
doi: 10.1042/bj2280103
Kramer, H. F. et al. AS160 regulates insulin- and contraction-stimulated glucose uptake in mouse skeletal muscle. J. Biol. Chem. 281, 31478–31485 (2006).
doi: 10.1074/jbc.M605461200
Ho, R. C., Alcazar, O., Fujii, N., Hirshman, M. F. & Goodyear, L. J. p38γ MAPK regulation of glucose transporter expression and glucose uptake in L6 myotubes and mouse skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R342–R349 (2004).
doi: 10.1152/ajpregu.00563.2003
Lynes, M. D. et al. The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue. Nat. Med. 23, 631–637 (2017).
doi: 10.1038/nm.4297
Townsend, K. L. et al. Increased mitochondrial activity in BMP7-treated brown adipocytes, due to increased CPT1- and CD36-mediated fatty acid uptake. Antioxid. Redox Signal. 19, 243–257 (2013).
doi: 10.1089/ars.2012.4536
De Keijzer, M. H., Brandts, R. W. & Brans, P. G. W. Evaluation of a biosensor for the measurement of lactate in whole blood. Clin. Biochem. 32, 109–112 (1999).
doi: 10.1016/S0009-9120(98)00105-2
Li, C. Automating dChip: toward reproducible sharing of microarray data analysis. BMC Bioinformatics 9, 231 (2008).
doi: 10.1186/1471-2105-9-231
Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
doi: 10.1093/nar/gkv007
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
doi: 10.1073/pnas.0506580102
Tian, L. et al. Discovering statistically significant pathways in expression profiling studies. Proc. Natl Acad. Sci. USA 102, 13544–13549 (2005).
doi: 10.1073/pnas.0506577102
Gentleman, R. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).
doi: 10.1186/gb-2004-5-10-r80

Auteurs

Hirokazu Takahashi (H)

Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.

Christiano R R Alves (CRR)

Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.

Kristin I Stanford (KI)

Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.

Roeland J W Middelbeek (RJW)

Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.

Pasquale Nigro (P)

Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.

Rebecca E Ryan (RE)

Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.

Ruidan Xue (R)

Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.

Masaji Sakaguchi (M)

Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.

Matthew D Lynes (MD)

Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.

Kawai So (K)

Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.

Joram D Mul (JD)

Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.

Min-Young Lee (MY)

Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.

Estelle Balan (E)

Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.

Hui Pan (H)

Bioinformatics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.

Jonathan M Dreyfuss (JM)

Bioinformatics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.

Michael F Hirshman (MF)

Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.

Mohamad Azhar (M)

Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, USA.

Jarna C Hannukainen (JC)

Turku PET Centre, University of Turku, Turku, Finland.

Pirjo Nuutila (P)

Turku PET Centre, University of Turku, Turku, Finland.

Kari K Kalliokoski (KK)

Turku PET Centre, University of Turku, Turku, Finland.

Søren Nielsen (S)

The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.

Bente K Pedersen (BK)

The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.

C Ronald Kahn (CR)

Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.

Yu-Hua Tseng (YH)

Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.

Laurie J Goodyear (LJ)

Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA. laurie.goodyear@joslin.harvard.edu.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH