SpikeDeeptector: a deep-learning based method for detection of neural spiking activity.


Journal

Journal of neural engineering
ISSN: 1741-2552
Titre abrégé: J Neural Eng
Pays: England
ID NLM: 101217933

Informations de publication

Date de publication:
23 07 2019
Historique:
pubmed: 3 5 2019
medline: 25 8 2020
entrez: 3 5 2019
Statut: epublish

Résumé

In electrophysiology, microelectrodes are the primary source for recording neural data (single unit activity). These microelectrodes can be implanted individually or in the form of arrays containing dozens to hundreds of channels. Recordings of some channels contain neural activity, which are often contaminated with noise. Another fraction of channels does not record any neural data, but only noise. By noise, we mean physiological activities unrelated to spiking, including technical artifacts and neural activities of neurons that are too far away from the electrode to be usefully processed. For further analysis, an automatic identification and continuous tracking of channels containing neural data is of great significance for many applications, e.g. automated selection of neural channels during online and offline spike sorting. Automated spike detection and sorting is also critical for online decoding in brain-computer interface (BCI) applications, in which only simple threshold crossing events are often considered for feature extraction. To our knowledge, there is no method that can universally and automatically identify channels containing neural data. In this study, we aim to identify and track channels containing neural data from implanted electrodes, automatically and more importantly universally. By universally, we mean across different recording technologies, different subjects and different brain areas. We propose a novel algorithm based on a new way of feature vector extraction and a deep learning method, which we call SpikeDeeptector. SpikeDeeptector considers a batch of waveforms to construct a single feature vector and enables contextual learning. The feature vectors are then fed to a deep learning method, which learns contextualized, temporal and spatial patterns, and classifies them as channels containing neural spike data or only noise. We trained the model of SpikeDeeptector on data recorded from a single tetraplegic patient with two Utah arrays implanted in different areas of the brain. The trained model was then evaluated on data collected from six epileptic patients implanted with depth electrodes, unseen data from the tetraplegic patient and data from another tetraplegic patient implanted with two Utah arrays. The cumulative evaluation accuracy was 97.20% on 1.56 million hand labeled test inputs. The results demonstrate that SpikeDeeptector generalizes not only to the new data, but also to different brain areas, subjects, and electrode types not used for training. The clinical trial registration number for patients implanted with the Utah array is NCT01849822. For the epilepsy patients, approval from the local ethics committee at the Ruhr-University Bochum, Germany, was obtained prior to implantation.

Identifiants

pubmed: 31042684
doi: 10.1088/1741-2552/ab1e63
doi:

Banques de données

ClinicalTrials.gov
['NCT01849822']

Types de publication

Clinical Trial Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

056003

Auteurs

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH