[Effects of a new anatomical adaptive titanium mesh cage on supportive load at the cervical endplate: a morphological and biomechanical study].
cervical fusion, endplate
interbody angle
interbody height
subsidence
supportive load
titanium mesh cage
Journal
Nan fang yi ke da xue xue bao = Journal of Southern Medical University
ISSN: 1673-4254
Titre abrégé: Nan Fang Yi Ke Da Xue Xue Bao
Pays: China
ID NLM: 101266132
Informations de publication
Date de publication:
30 Apr 2019
30 Apr 2019
Historique:
entrez:
10
5
2019
pubmed:
10
5
2019
medline:
23
8
2019
Statut:
ppublish
Résumé
To assess the geometrical matching of a new anatomical adaptive titanium mesh cage (AA-TMC) with the endplate and its effect on cervical segmental alignment reconstruction in single- and two-level anterior cervical corpectomy and fusion (ACCF) and compare the compressive load at the endplate between the AA-TMC and the conventional titanium mesh cage (TMC). Twelve cervical cadaveric specimens were used to perform single- and two-level ACCF. The interbody angle (IBA), interbody height (IBH) and the interval between the AA-TMC and the endplate were evaluated by comparison of the pre- and postoperative X-ray images. The maximum load at the endplate was compared between the AA-TMC and TMC based on American Society for Testing and Materials (ASTM) F2267 standard. No significant differences were found between the preoperative and postoperative IBA and IBH in either single-level ACCF (11.62°±2.67° The use of AA-TMC in single-level and two-level ACCF can significantly increase the maximum load at the endplate to lower the possibility of implant subsidence and allows effective reconstruction of the cervical alignment.
Identifiants
pubmed: 31068283
doi: 10.12122/j.issn.1673-4254.2019.04.05
pmc: PMC6743989
doi:
Substances chimiques
Titanium
D1JT611TNE
Types de publication
Journal Article
Langues
chi
Pagination
409-414Références
Acta Neurochir (Wien). 2010 Jul;152(7):1155-63
pubmed: 20443029
Eur Spine J. 2013 Dec;22(12):2891-6
pubmed: 24000074
J Spinal Disord Tech. 2008 Oct;21(7):489-92
pubmed: 18836360
Spine (Phila Pa 1976). 2004 Nov 1;29(21):2389-94
pubmed: 15507800
J Orthop Res. 2012 Apr;30(4):587-92
pubmed: 22002745
Int Orthop. 2013 Dec;37(12):2421-7
pubmed: 24057657
Int J Clin Exp Med. 2015 May 15;8(5):7405-11
pubmed: 26221282
Spine (Phila Pa 1976). 1993 Jun 15;18(8):1011-5
pubmed: 8367768
Arch Orthop Trauma Surg. 2011 Oct;131(10):1369-74
pubmed: 21573884
Spine (Phila Pa 1976). 2001 Apr 15;26(8):957-63
pubmed: 11317121
Med Sci Monit. 2017 Jun 12;23:2863-2870
pubmed: 28604653
Med Sci Monit. 2017 Jun 25;23:3105-3114
pubmed: 28647748
Spine (Phila Pa 1976). 2000 Sep 15;25(18):2407-15
pubmed: 10984797
Eur Spine J. 2007 Dec;16(12):2104-9
pubmed: 17712574
J Orthop Res. 2002 Sep;20(5):1115-20
pubmed: 12382980
Spine J. 2017 Feb;17(2):269-276
pubmed: 27713104
J Neurosurg. 2003 Jul;99(1 Suppl):3-7
pubmed: 12859051
J Clin Neurosci. 2014 Oct;21(10):1779-85
pubmed: 24957629
Eur Spine J. 2004 May;13(3):235-40
pubmed: 14730439
Eur Spine J. 2013 Jul;22(7):1570-5
pubmed: 23612902
Clin Orthop Relat Res. 2002 Jan;(394):47-54
pubmed: 11795751
Acta Radiol. 2004 Feb;45(1):53-8
pubmed: 15164779
Medicine (Baltimore). 2017 Mar;96(10):e6296
pubmed: 28272256
Clin Neurol Neurosurg. 2016 Mar;142:132-136
pubmed: 26852320
Spine (Phila Pa 1976). 2000 May 1;25(9):1077-84
pubmed: 10788851