An Adaptive Multivariate Two-Sample Test With Application to Microbiome Differential Abundance Analysis.
adaptive microbiome differential analysis (AMDA)
maximum mean discrepancy (MMD)
multivariate two-sample test
permutation
subset testing
taxa-set
Journal
Frontiers in genetics
ISSN: 1664-8021
Titre abrégé: Front Genet
Pays: Switzerland
ID NLM: 101560621
Informations de publication
Date de publication:
2019
2019
Historique:
received:
08
01
2019
accepted:
01
04
2019
entrez:
10
5
2019
pubmed:
10
5
2019
medline:
10
5
2019
Statut:
epublish
Résumé
Differential abundance analysis is a crucial task in many microbiome studies, where the central goal is to identify microbiome taxa associated with certain biological or clinical conditions. There are two different modes of microbiome differential abundance analysis: the individual-based univariate differential abundance analysis and the group-based multivariate differential abundance analysis. The univariate analysis identifies differentially abundant microbiome taxa subject to multiple correction under certain statistical error measurements such as false discovery rate, which is typically complicated by the high-dimensionality of taxa and complex correlation structure among taxa. The multivariate analysis evaluates the overall shift in the abundance of microbiome composition between two conditions, which provides useful preliminary differential information for the necessity of follow-up validation studies. In this paper, we present a novel
Identifiants
pubmed: 31068967
doi: 10.3389/fgene.2019.00350
pmc: PMC6491633
doi:
Types de publication
Journal Article
Langues
eng
Pagination
350Subventions
Organisme : NCATS NIH HHS
ID : KL2 TR002015
Pays : United States
Organisme : NIMH NIH HHS
ID : R41 MH111347
Pays : United States
Organisme : NIMH NIH HHS
ID : R42 MH111347
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM102057
Pays : United States
Références
Nature. 2009 Jan 22;457(7228):480-4
pubmed: 19043404
Bioinformatics. 2010 Jan 1;26(1):139-40
pubmed: 19910308
Genome Biol. 2010;11(10):R106
pubmed: 20979621
Cell. 2011 Sep 30;147(1):44-56
pubmed: 21962506
Biostatistics. 2012 Sep;13(4):776-90
pubmed: 22734045
Nature. 2012 Oct 4;490(7418):55-60
pubmed: 23023125
PLoS Comput Biol. 2014 Apr 03;10(4):e1003531
pubmed: 24699258
Genetics. 2014 Aug;197(4):1081-95
pubmed: 24831820
Nat Rev Microbiol. 2014 Oct;12(10):661-72
pubmed: 25198138
Bioinformatics. 2015 Jul 15;31(14):2269-75
pubmed: 25792553
Genome Biol. 2015 Apr 08;16:67
pubmed: 25887922
Am J Hum Genet. 2015 May 7;96(5):797-807
pubmed: 25957468
Am J Hum Genet. 2015 Jul 2;97(1):86-98
pubmed: 26119817
Nat Med. 2015 Aug;21(8):895-905
pubmed: 26214836
Stat Biosci. 2015 Oct 1;7(2):262-281
pubmed: 26640602
Genet Epidemiol. 2016 Jan;40(1):5-19
pubmed: 26643881
Bioinformatics. 2016 Sep 1;32(17):2618-25
pubmed: 27197815
Genome Med. 2016 May 19;8(1):56
pubmed: 27198579
Nat Rev Microbiol. 2016 Aug;14(8):508-22
pubmed: 27396567
Nucleic Acids Res. 2017 Feb 28;45(4):1649-1656
pubmed: 27965413
Bioinformatics. 2017 May 1;33(9):1278-1285
pubmed: 28003264
Genet Epidemiol. 2017 Apr;41(3):210-220
pubmed: 28019040
Microbiome. 2017 Feb 8;5(1):17
pubmed: 28179014
Microbiome. 2017 Mar 3;5(1):27
pubmed: 28253908
Biometrics. 2017 Dec;73(4):1453-1463
pubmed: 28295177
Microbiome. 2017 Apr 24;5(1):45
pubmed: 28438217
Menopause. 2017 Oct;24(10):1160-1166
pubmed: 28640154
Brief Bioinform. 2019 Jan 18;20(1):210-221
pubmed: 28968702
Bioinformatics. 2018 Feb 15;34(4):643-651
pubmed: 29040451
Genet Epidemiol. 2018 Jul;42(5):459-469
pubmed: 29737047
Autism Res. 2018 Sep;11(9):1286-1299
pubmed: 30107083
Genet Epidemiol. 2018 Dec;42(8):772-782
pubmed: 30218543