Extension of the minimal functional unit of the RNA polymerase II CTD from yeast to mammalian cells.
C-terminal domain (CTD)
RNA polymerase II (Pol II)
heptad-repeats
low-complexity domain
minimal functional unit (MFU)
Journal
Biology letters
ISSN: 1744-957X
Titre abrégé: Biol Lett
Pays: England
ID NLM: 101247722
Informations de publication
Date de publication:
31 05 2019
31 05 2019
Historique:
entrez:
16
5
2019
pubmed:
16
5
2019
medline:
18
12
2019
Statut:
ppublish
Résumé
The carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) consists of 26 and 52 heptad-repeats in yeast and mammals, respectively. Studies in yeast showed that the strong periodicity of the YSPTSPS heptads is dispensable for cell growth and that di-heptads interspersed by spacers can act as minimal functional units (MFUs) to fulfil all essential CTD functions. Here, we show that the MFU of mammalian cells is significantly larger than in yeast and consists of penta-heptads. We further show that the distance between two MFUs is critical for the functions of mammalian CTD. Our study suggests that the general structure of the CTD remained largely unchanged in yeast and mammals; however, besides the number of heptad-repeats, also the length of the MFU significantly increased in mammals.
Identifiants
pubmed: 31088280
doi: 10.1098/rsbl.2019.0068
pmc: PMC6548728
doi:
Substances chimiques
RNA Polymerase II
EC 2.7.7.-
Banques de données
figshare
['10.6084/m9.figshare.c.4486784']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
20190068Références
Mol Biol Evol. 2008 Apr;25(4):719-27
pubmed: 18209193
Mol Cell. 2012 Jan 13;45(1):111-22
pubmed: 22137580
J Biol Chem. 2010 Jul 2;285(27):20564-9
pubmed: 20457598
Nat Struct Mol Biol. 2016 Sep 6;23(9):771-7
pubmed: 27605205
Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):17931-5
pubmed: 23071300
Nucleic Acids Res. 2004 Jan 02;32(1):35-44
pubmed: 14704341
J Mol Biol. 2016 Jun 19;428(12):2607-2622
pubmed: 26876604
Cell. 1987 Sep 11;50(6):909-15
pubmed: 3304659
Chem Rev. 2013 Nov 13;113(11):8456-90
pubmed: 23952966
Mol Biol Evol. 2010 Nov;27(11):2628-41
pubmed: 20558594
Mol Cell. 2011 Jul 22;43(2):311-8
pubmed: 21684186
Eukaryot Cell. 2004 Jun;3(3):735-40
pubmed: 15189994
Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):18024-9
pubmed: 23071310
Mol Cell Biol. 2005 Sep;25(17):7665-74
pubmed: 16107713
Science. 2018 Jul 27;361(6400):
pubmed: 29930091
Mol Cell Biol. 1988 Jan;8(1):321-9
pubmed: 3122024
EMBO J. 2012 Jun 13;31(12):2784-97
pubmed: 22549466
Nat Commun. 2014 Nov 20;5:5531
pubmed: 25410209
Nat Struct Mol Biol. 2013 May;20(5):611-9
pubmed: 23563140
Science. 2018 Jul 27;361(6400):412-415
pubmed: 29930094
Mol Cell. 2016 Jan 21;61(2):297-304
pubmed: 26799764
Chem Rev. 2013 Nov 13;113(11):8423-55
pubmed: 24040939
Biochim Biophys Acta. 2016 Oct;1859(10):1269-80
pubmed: 27427483
Mol Cell Biol. 1988 Jan;8(1):330-9
pubmed: 3275873
Genetics. 1995 Jun;140(2):599-613
pubmed: 7498740
Science. 2007 Dec 14;318(5857):1780-2
pubmed: 18079404
Cell. 2013 Nov 21;155(5):1049-1060
pubmed: 24267890
Mol Cell. 2014 Oct 2;56(1):128-139
pubmed: 25201415
J Biol Chem. 2000 Aug 11;275(32):24375-82
pubmed: 10825165
Mol Cell. 2016 Jan 21;61(2):305-14
pubmed: 26799765
Cell. 2005 Oct 21;123(2):265-76
pubmed: 16239144
Proc Natl Acad Sci U S A. 1985 Dec;82(23):7934-8
pubmed: 2999785
Mol Cell. 2018 Jan 4;69(1):48-61.e6
pubmed: 29304333
Nat Struct Mol Biol. 2018 Sep;25(9):833-840
pubmed: 30127355