Activation of the macroautophagy pathway by Yersinia enterocolitica promotes intracellular multiplication and egress of yersiniae from epithelial cells.
Yersinia
autophagy
infection
microbial-cell interaction
Journal
Cellular microbiology
ISSN: 1462-5822
Titre abrégé: Cell Microbiol
Pays: India
ID NLM: 100883691
Informations de publication
Date de publication:
09 2019
09 2019
Historique:
received:
20
09
2018
revised:
30
04
2019
accepted:
13
05
2019
pubmed:
18
5
2019
medline:
17
9
2020
entrez:
18
5
2019
Statut:
ppublish
Résumé
The virulence strategy of pathogenic Yersinia spp. involves cell-invasive as well as phagocytosis-preventing tactics to enable efficient colonisation of the host organism. Enteropathogenic yersiniae display an invasive phenotype in early infection stages, which facilitates penetration of the intestinal mucosa. Here we show that invasion of epithelial cells by Yersinia enterocolitica is followed by intracellular survival and multiplication of a subset of ingested bacteria. The replicating bacteria were enclosed in vacuoles with autophagy-related characteristics, showing phagophore formation, xenophagy, and recruitment of cytoplasmic autophagosomes to the bacteria-containing compartments. The subsequent fusion of these vacuoles with lysosomes and concomitant vesicle acidification were actively blocked by Yersinia. This resulted in increased intracellular proliferation and detectable egress of yersiniae from infected cells. Notably, deficiency of the core autophagy machinery component FIP200 impaired the development of autophagic features at Yersinia-containing vacuoles as well as intracellular replication and release of bacteria to the extracellular environment. These results suggest that Y. enterocolitica may take advantage of the macroautophagy pathway in epithelial cells to create an autophagosomal niche that supports intracellular bacterial survival, replication, and, eventually, spread of the bacteria from infected cells.
Substances chimiques
MAP1LC3A protein, human
0
Map1lc3b protein, mouse
0
Microtubule-Associated Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e13046Subventions
Organisme : Deutscher Akademischer Austauschdienst
Pays : International
Organisme : Deutsche Forschungsgemeinschaft
ID : Research training group 1459
Pays : International
Organisme : Deutsche Forschungsgemeinschaft
ID : Ru 788/5-1
Pays : International
Informations de copyright
© 2019 John Wiley & Sons Ltd.
Références
Amaya, C., Fader, C. M., & Colombo, M. I. (2015). Autophagy and proteins involved in vesicular trafficking. FEBS Letters, 589, 3343-3353. https://doi.org/10.1016/j.febslet.2015.09.021
Ao, X., Zou, L., & Wu, Y. (2014). Regulation of autophagy by the Rab GTPase network. Cell Death and Differentiation, 21, 348-358. https://doi.org/10.1038/cdd.2013.187
Atkinson, S., & Williams, P. (2016). Yersinia virulence factors-A sophisticated arsenal for combating host defences. F1000Research, 5. https://doi.org/10.12688/f1000research.8466.1
Avican, K., Fahlgren, A., Huss, M., Heroven, A. K., Beckstette, M., Dersch, P., & Fallman, M. (2015). Reprogramming of Yersinia from virulent to persistent mode revealed by complex in vivo RNA-seq analysis. PLoS Pathogens, 11, e1004600. https://doi.org/10.1371/journal.ppat.1004600
Bens, M., Bogdanova, A., Cluzeaud, F., Miquerol, L., Kerneis, S., Kraehenbuhl, J. P., … Vandewalle, A. (1996). Transimmortalized mouse intestinal cells (m-ICc12) that maintain a crypt phenotype. The American Journal of Physiology, 270, C1666-C1674. https://doi.org/10.1152/ajpcell.1996.270.6.C1666
Cadwell, K., & Debnath, J. (2018). Beyond self-eating: The control of nonautophagic functions and signaling pathways by autophagy-related proteins. The Journal of Cell Biology, 217, 813-822. https://doi.org/10.1083/jcb.201706157
Choi, Y., Bowman, J. W., & Jung, J. U. (2018). Autophagy during viral infection-A double-edged sword. Nature Reviews. Microbiology, 16, 341-354. https://doi.org/10.1038/s41579-018-0003-6
Claude-Taupin, A., Jia, J., Mudd, M., & Deretic, V. (2017). Autophagy's secret life: Secretion instead of degradation. Essays in Biochemistry, 61, 637-647. https://doi.org/10.1042/EBC20170024
Connor, M. G., Pulsifer, A. R., Chung, D., Rouchka, E. C., Ceresa, B. K., & Lawrenz, M. B. (2018). Yersinia pestis targets the host endosome recycling pathway during the biogenesis of the yersinia-containing vacuole to avoid killing by macrophages. MBio, 9. https://doi.org/10.1128/mBio.01800-17
Connor, M. G., Pulsifer, A. R., Price, C. T., Abu Kwaik, Y., & Lawrenz, M. B. (2015). Yersinia pestis requires host Rab1b for survival in macrophages. PLoS Pathogens, 11, e1005241. https://doi.org/10.1371/journal.ppat.1005241
Cornelis, G., Laroche, Y., Balligand, G., Sory, M. P., & Wauters, G. (1987). Yersinia enterocolitica, a primary model for bacterial invasiveness. Reviews of Infectious Diseases, 9, 64-87. https://doi.org/10.1093/clinids/9.1.64
Dantuma, N. P., Groothuis, T. A., Salomons, F. A., & Neefjes, J. (2006). A dynamic ubiquitin equilibrium couples proteasomal activity to chromatin remodeling. The Journal of Cell Biology, 173, 19-26. https://doi.org/10.1083/jcb.200510071
Dersch, P., & Isberg, R. R. (1999). A region of the Yersinia pseudotuberculosis invasin protein enhances integrin-mediated uptake into mammalian cells and promotes self-association. The EMBO Journal, 18, 1199-1213. https://doi.org/10.1093/emboj/18.5.1199
Deuretzbacher, A., Czymmeck, N., Reimer, R., Trulzsch, K., Gaus, K., Hohenberg, H., … Ruckdeschel, K. (2009). Beta1 integrin-dependent engulfment of Yersinia enterocolitica by macrophages is coupled to the activation of autophagy and suppressed by type III protein secretion. Journal of Immunology, 183, 5847-5860. https://doi.org/10.4049/jimmunol.0804242
Di Venanzio, G., Lazzaro, M., Morales, E. S., Krapf, D., & Garcia Vescovi, E. (2017). A pore-forming toxin enables Serratia a nonlytic egress from host cells. Cellular Microbiology, 19. https://doi.org/10.1111/cmi.12656
Eskelinen, E. L. (2008). To be or not to be? Examples of incorrect identification of autophagic compartments in conventional transmission electron microscopy of mammalian cells. Autophagy, 4, 257-260. https://doi.org/10.4161/auto.5179
Fader, C. M., & Colombo, M. I. (2009). Autophagy and multivesicular bodies: Two closely related partners. Cell Death and Differentiation, 16, 70-78. https://doi.org/10.1038/cdd.2008.168
Fahlgren, A., Avican, K., Westermark, L., Nordfelth, R., & Fallman, M. (2014). Colonization of cecum is important for development of persistent infection by Yersinia pseudotuberculosis. Infection and Immunity, 82, 3471-3482. https://doi.org/10.1128/IAI.01793-14
Flores-Diaz, M., Monturiol-Gross, L., Naylor, C., Alape-Giron, A., & Flieger, A. (2016). Bacterial sphingomyelinases and phospholipases as virulence factors. Microbiology and Molecular Biology Reviews, 80, 597-628. https://doi.org/10.1128/MMBR.00082-15
Fujita, N., Morita, E., Itoh, T., Tanaka, A., Nakaoka, M., Osada, Y., … Yoshimori, T. (2013). Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin. The Journal of Cell Biology, 203, 115-128. https://doi.org/10.1083/jcb.201304188
Galluzzi, L., Baehrecke, E. H., Ballabio, A., Boya, P., Bravo-San Pedro, J. M., Cecconi, F., … Kroemer, G. (2017). Molecular definitions of autophagy and related processes. The EMBO Journal, 36, 1811-1836. https://doi.org/10.15252/embj.201796697
Gatica, D., Lahiri, V., & Klionsky, D. J. (2018). Cargo recognition and degradation by selective autophagy. Nature Cell Biology, 20, 233-242. https://doi.org/10.1038/s41556-018-0037-z
Gerstenmaier, L., Pilla, R., Herrmann, L., Herrmann, H., Prado, M., Villafano, G. J., … Hagedorn, M. (2015). The autophagic machinery ensures nonlytic transmission of mycobacteria. Proceedings of the National Academy of Sciences of the United States of America, 112, E687-E692. https://doi.org/10.1073/pnas.1423318112
Grant, T., Bennett-Wood, V., & Robins-Browne, R. M. (1999). Characterization of the interaction between Yersinia enterocolitica biotype 1A and phagocytes and epithelial cells in vitro. Infection and Immunity, 67, 4367-4375.
Grassl, G. A., Bohn, E., Muller, Y., Buhler, O. T., & Autenrieth, I. B. (2003). Interaction of Yersinia enterocolitica with epithelial cells: Invasin beyond invasion. International Journal of Medical Microbiology, 293, 41-54. https://doi.org/10.1078/1438-4221-00243
Heesemann, J., & Laufs, R. (1983). Construction of a mobilizable Yersinia enterocolitica virulence plasmid. Journal of Bacteriology, 155, 761-767.
Heesemann, J., Sing, A., & Trulzsch, K. (2006). Yersinia's stratagem: Targeting innate and adaptive immune defense. Current Opinion in Microbiology, 9, 55-61. https://doi.org/10.1016/j.mib.2005.10.018
Henry, R., Shaughnessy, L., Loessner, M. J., Alberti-Segui, C., Higgins, D. E., & Swanson, J. A. (2006). Cytolysin-dependent delay of vacuole maturation in macrophages infected with Listeria monocytogenes. Cellular Microbiology, 8, 107-119. https://doi.org/10.1111/j.1462-5822.2005.00604.x
Huang, J., & Brumell, J. H. (2014). Bacteria-autophagy interplay: A battle for survival. Nature Reviews. Microbiology, 12, 101-114. https://doi.org/10.1038/nrmicro3160
Huotari, J., & Helenius, A. (2011). Endosome maturation. The EMBO Journal, 30, 3481-3500. https://doi.org/10.1038/emboj.2011.286
Ireton, K., Van Ngo, H., & Bhalla, M. (2018). Interaction of microbial pathogens with host exocytic pathways. Cellular Microbiology, 20, e12861. https://doi.org/10.1111/cmi.12861
Isberg, R. R., & Barnes, P. (2001). Subversion of integrins by enteropathogenic Yersinia. Journal of Cell Science, 114, 21-28.
Istivan, T. S., & Coloe, P. J. (2006). Phospholipase A in Gram-negative bacteria and its role in pathogenesis. Microbiology, 152, 1263-1274. https://doi.org/10.1099/mic.0.28609-0
Jackson, W. T., Giddings, T. H. Jr., Taylor, M. P., Mulinyawe, S., Rabinovitch, M., Kopito, R. R., & Kirkegaard, K. (2005). Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biology, 3, e156. https://doi.org/10.1371/journal.pbio.0030156
Kimmey, J. M., & Stallings, C. L. (2016). Bacterial pathogens versus autophagy: Implications for therapeutic interventions. Trends in Molecular Medicine, 22, 1060-1076. https://doi.org/10.1016/j.molmed.2016.10.008
Kimura, S., Noda, T., & Yoshimori, T. (2007). Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy, 3, 452-460. https://doi.org/10.4161/auto.4451
Klionsky, D. J., Abdelmohsen, K., Abe, A., Abedin, M. J., Abeliovich, H., Acevedo Arozena, A., … Zughaier, S. M. (2016). Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 12, 1-222. https://doi.org/10.1080/15548627.2015.1100356
Kohler, L. J., & Roy, C. R. (2017). Autophagic targeting and avoidance in intracellular bacterial infections. Current Opinion in Microbiology, 35, 36-41. https://doi.org/10.1016/j.mib.2016.11.004
Kuma, A., Hatano, M., Matsui, M., Yamamoto, A., Nakaya, H., Yoshimori, T., … Mizushima, N. (2004). The role of autophagy during the early neonatal starvation period. Nature, 432, 1032-1036. https://doi.org/10.1038/nature03029
Lian, C. J., Hwang, W. S., Kelly, J. K., & Pai, C. H. (1987). Invasiveness of Yersinia enterocolitica lacking the virulence plasmid: An in-vivo study. Journal of Medical Microbiology, 24, 219-226. https://doi.org/10.1099/00222615-24-3-219
Ligeon, L. A., Barois, N., Werkmeister, E., Bongiovanni, A., & Lafont, F. (2015). Structured illumination microscopy and correlative microscopy to study autophagy. Methods, 75, 61-68. https://doi.org/10.1016/j.ymeth.2015.01.017
Ligeon, L. A., Moreau, K., Barois, N., Bongiovanni, A., Lacorre, D. A., Werkmeister, E., … Lafont, F. (2014). Role of VAMP3 and VAMP7 in the commitment of Yersinia pseudotuberculosis to LC3-associated pathways involving single- or double-membrane vacuoles. Autophagy, 10, 1588-1602. https://doi.org/10.4161/auto.29411
Maejima, I., Takahashi, A., Omori, H., Kimura, T., Takabatake, Y., Saitoh, T., … Yoshimori, T. (2013). Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. The EMBO Journal, 32, 2336-2347. https://doi.org/10.1038/emboj.2013.171
Marra, A., & Isberg, R. R. (1997). Invasin-dependent and invasin-independent pathways for translocation of Yersinia pseudotuberculosis across the Peyer's patch intestinal epithelium. Infection and Immunity, 65, 3412-3421.
Martens, S., Parvanova, I., Zerrahn, J., Griffiths, G., Schell, G., Reichmann, G., & Howard, J. C. (2005). Disruption of Toxoplasma gondii parasitophorous vacuoles by the mouse p47-resistance GTPases. PLoS Pathogens, 1, e24. https://doi.org/10.1371/journal.ppat.0010024
McNally, A., Thomson, N. R., Reuter, S., & Wren, B. W. (2016). 'Add, stir and reduce': Yersinia spp. as model bacteria for pathogen evolution. Nature Reviews. Microbiology, 14, 177-190. https://doi.org/10.1038/nrmicro.2015.29
Minakaki, G., Menges, S., Kittel, A., Emmanouilidou, E., Schaeffner, I., Barkovits, K., … Klucken, J. (2018). Autophagy inhibition promotes SNCA/alpha-synuclein release and transfer via extracellular vesicles with a hybrid autophagosome-exosome-like phenotype. Autophagy, 14, 98-119. https://doi.org/10.1080/15548627.2017.1395992
Moreau, K., Lacas-Gervais, S., Fujita, N., Sebbane, F., Yoshimori, T., Simonet, M., & Lafont, F. (2010). Autophagosomes can support Yersinia pseudotuberculosis replication in macrophages. Cellular Microbiology, 12, 1108-1123. https://doi.org/10.1111/j.1462-5822.2010.01456.x
Mostowy, S., & Cossart, P. (2012). Bacterial autophagy: Restriction or promotion of bacterial replication? Trends in Cell Biology, 22, 283-291. https://doi.org/10.1016/j.tcb.2012.03.006
Munz, C. (2017). Autophagy proteins in viral exocytosis and anti-viral immune responses. Viruses, 9. https://doi.org/10.3390/v9100288
New, J., & Thomas, S. M. (2019). Autophagy-dependent secretion: Mechanism, factors secreted, and disease implications. Autophagy, 1-12. https://doi.org/10.1080/15548627.2019.1596479
Oellerich, M. F., Jacobi, C. A., Freund, S., Niedung, K., Bach, A., Heesemann, J., & Trulzsch, K. (2007). Yersinia enterocolitica infection of mice reveals clonal invasion and abscess formation. Infection and Immunity, 75, 3802-3811. https://doi.org/10.1128/IAI.00419-07
Paz, I., Sachse, M., Dupont, N., Mounier, J., Cederfur, C., Enninga, J., … Sansonetti, P. (2010). Galectin-3, a marker for vacuole lysis by invasive pathogens. Cellular Microbiology, 12, 530-544. https://doi.org/10.1111/j.1462-5822.2009.01415.x
Pepe, J. C., & Miller, V. L. (1993). Yersinia enterocolitica invasin: A primary role in the initiation of infection. Proceedings of the National Academy of Sciences of the United States of America, 90, 6473-6477. https://doi.org/10.1073/pnas.90.14.6473
Ponpuak, M., Mandell, M. A., Kimura, T., Chauhan, S., Cleyrat, C., & Deretic, V. (2015). Secretory autophagy. Current Opinion in Cell Biology, 35, 106-116. https://doi.org/10.1016/j.ceb.2015.04.016
Pujol, C., & Bliska, J. B. (2005). Turning Yersinia pathogenesis outside in: Subversion of macrophage function by intracellular yersiniae. Clinical Immunology, 114, 216-226. https://doi.org/10.1016/j.clim.2004.07.013
Pujol, C., Klein, K. A., Romanov, G. A., Palmer, L. E., Cirota, C., Zhao, Z., & Bliska, J. B. (2009). Yersinia pestis can reside in autophagosomes and avoid xenophagy in murine macrophages by preventing vacuole acidification. Infection and Immunity, 77, 2251-2261. https://doi.org/10.1128/IAI.00068-09
Randow, F., & Youle, R. J. (2014). Self and nonself: How autophagy targets mitochondria and bacteria. Cell Host & Microbe, 15, 403-411. https://doi.org/10.1016/j.chom.2014.03.012
Sanjuan, M. A., Dillon, C. P., Tait, S. W., Moshiach, S., Dorsey, F., Connell, S., … Green, D. R. (2007). Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature, 450, 1253-1257. https://doi.org/10.1038/nature06421
Schulte, R., Grassl, G. A., Preger, S., Fessele, S., Jacobi, C. A., Schaller, M., … Autenrieth, I. B. (2000). Yersinia enterocolitica invasin protein triggers IL-8 production in epithelial cells via activation of Rel p65-p65 homodimers. The FASEB Journal, 14, 1471-1484. https://doi.org/10.1096/fj.99-0847com
Shibutani, S. T., Saitoh, T., Nowag, H., Munz, C., & Yoshimori, T. (2015). Autophagy and autophagy-related proteins in the immune system. Nature Immunology, 16, 1014-1024. https://doi.org/10.1038/ni.3273
Sil, P., Muse, G., & Martinez, J. (2018). A ravenous defense: Canonical and non-canonical autophagy in immunity. Current Opinion in Immunology, 50, 21-31. https://doi.org/10.1016/j.coi.2017.10.004
Srivastava, A., & Isberg, R. R. (2002). Measurement of bacterial uptake by cultured cells. Methods in Microbiology, 31, 179-188. https://doi.org/10.1016/S0580-9517(02)31010-9
Starr, T., Child, R., Wehrly, T. D., Hansen, B., Hwang, S., Lopez-Otin, C., … Celli, J. (2012). Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host & Microbe, 11, 33-45. https://doi.org/10.1016/j.chom.2011.12.002
Stolz, A., Ernst, A., & Dikic, I. (2014). Cargo recognition and trafficking in selective autophagy. Nature Cell Biology, 16, 495-501. https://doi.org/10.1038/ncb2979
Wacker, R., Eickel, N., Schmuckli-Maurer, J., Annoura, T., Niklaus, L., Khan, S. M., … Heussler, V. T. (2017). LC3-association with the parasitophorous vacuole membrane of Plasmodium berghei liver stages follows a noncanonical autophagy pathway. Cellular Microbiology, 19. https://doi.org/10.1111/cmi.12754
Xu, J., Camfield, R., & Gorski, S. M. (2018). The interplay between exosomes and autophagy-Partners in crime. Journal of Cell Science, 131, jcs215210. https://doi.org/10.1242/jcs.215210
Yu, L., Chen, Y., & Tooze, S. A. (2018). Autophagy pathway: Cellular and molecular mechanisms. Autophagy, 14, 207-215. https://doi.org/10.1080/15548627.2017.1378838