Recomputation of the Dense Layers for Performance Improvement of DCNN.


Journal

IEEE transactions on pattern analysis and machine intelligence
ISSN: 1939-3539
Titre abrégé: IEEE Trans Pattern Anal Mach Intell
Pays: United States
ID NLM: 9885960

Informations de publication

Date de publication:
11 2020
Historique:
pubmed: 21 5 2019
medline: 17 7 2021
entrez: 21 5 2019
Statut: ppublish

Résumé

Gradient descent optimization of learning has become a paradigm for training deep convolutional neural networks (DCNN). However, utilizing other learning strategies in the training process of the DCNN has rarely been explored by the deep learning (DL) community. This serves as the motivation to introduce a non-iterative learning strategy to retrain neurons at the top dense or fully connected (FC) layers of DCNN, resulting in, higher performance. The proposed method exploits the Moore-Penrose Inverse to pull back the current residual error to each FC layer, generating well-generalized features. Further, the weights of each FC layers are recomputed according to the Moore-Penrose Inverse. We evaluate the proposed approach on six most widely accepted object recognition benchmark datasets: Scene-15, CIFAR-10, CIFAR-100, SUN-397, Places365, and ImageNet. The experimental results show that the proposed method obtains improvements over 30 state-of-the-art methods. Interestingly, it also indicates that any DCNN with the proposed method can provide better performance than the same network with its original Backpropagation (BP)-based training.

Identifiants

pubmed: 31107643
doi: 10.1109/TPAMI.2019.2917685
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2912-2925

Auteurs

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages
Databases, Protein Protein Domains Protein Folding Proteins Deep Learning
1.00
Humans Magnetic Resonance Imaging Brain Infant, Newborn Infant, Premature
Cephalometry Humans Anatomic Landmarks Software Internet

Classifications MeSH