Late steps in bacterial translation initiation visualized using time-resolved cryo-EM.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
06 2019
Historique:
received: 27 07 2018
accepted: 08 05 2019
pubmed: 21 5 2019
medline: 6 2 2020
entrez: 21 5 2019
Statut: ppublish

Résumé

The initiation of bacterial translation involves the tightly regulated joining of the 50S ribosomal subunit to an initiator transfer RNA (fMet-tRNA

Identifiants

pubmed: 31108498
doi: 10.1038/s41586-019-1249-5
pii: 10.1038/s41586-019-1249-5
pmc: PMC7060745
mid: NIHMS1528928
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

400-404

Subventions

Organisme : NIGMS NIH HHS
ID : R37 GM029169
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM029169
Pays : United States
Organisme : NIH HHS
ID : GM 29169
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM055440
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM084288
Pays : United States

Références

Antoun, A., Pavlov, M. Y., Andersson, K., Tenson, T. & Ehrenberg, M. The roles of initiation factor 2 and guanosine triphosphate in initiation of protein synthesis. EMBO J. 22, 5593–5601 (2003).
doi: 10.1093/emboj/cdg525
Hussain, T., Llacer, J. L., Wimberly, B. T., Kieft, J. S. & Ramakrishnan, V. Large-scale movements of IF3 and tRNA during bacterial translation initiation. Cell 167, 133–144.e13 (2016).
doi: 10.1016/j.cell.2016.08.074
Julián, P. et al. The Cryo-EM structure of a complete 30S translation initiation complex from Escherichia coli. PLoS Biol. 9, e1001095 (2011).
doi: 10.1371/journal.pbio.1001095
Simonetti, A. et al. Involvement of protein IF2 N domain in ribosomal subunit joining revealed from architecture and function of the full-length initiation factor. Proc. Natl Acad. Sci. USA 110, 15656–15661 (2013).
doi: 10.1073/pnas.1309578110
Simonetti, A. et al. Structure of the 30S translation initiation complex. Nature 455, 416–420 (2008).
doi: 10.1038/nature07192
Allen, G. S., Zavialov, A., Gursky, R., Ehrenberg, M. & Frank, J. The cryo-EM structure of a translation initiation complex from Escherichia coli. Cell 121, 703–712 (2005).
doi: 10.1016/j.cell.2005.03.023
Myasnikov, A. G. et al. Conformational transition of initiation factor 2 from the GTP- to GDP-bound state visualized on the ribosome. Nat. Struct. Mol. Biol. 12, 1145–1149 (2005).
doi: 10.1038/nsmb1012
Sprink, T. et al. Structures of ribosome-bound initiation factor 2 reveal the mechanism of subunit association. Sci. Adv. 2, e1501502 (2016).
doi: 10.1126/sciadv.1501502
Frank, J. Time-resolved cryo-electron microscopy: Recent progress. J. Struct. Biol. 200, 303–306 (2017).
doi: 10.1016/j.jsb.2017.06.005
Antoun, A., Pavlov, M. Y., Lovmar, M. & Ehrenberg, M. How initiation factors maximize the accuracy of tRNA selection in initiation of bacterial protein synthesis. Mol. Cell 23, 183–193 (2006).
doi: 10.1016/j.molcel.2006.05.030
Caban, K. & Gonzalez, R. L. Jr. The emerging role of rectified thermal fluctuations in initiator aa-tRNA- and start codon selection during translation initiation. Biochimie 114, 30–38 (2015).
doi: 10.1016/j.biochi.2015.04.001
Milon, P., Konevega, A. L., Gualerzi, C. O. & Rodnina, M. V. Kinetic checkpoint at a late step in translation initiation. Mol. Cell 30, 712–720 (2008).
doi: 10.1016/j.molcel.2008.04.014
Milón, P. & Rodnina, M. V. Kinetic control of translation initiation in bacteria. Crit. Rev. Biochem. Mol. Biol. 47, 334–348 (2012).
doi: 10.3109/10409238.2012.678284
Grigoriadou, C., Marzi, S., Kirillov, S., Gualerzi, C. O. & Cooperman, B. S. A quantitative kinetic scheme for 70 S translation initiation complex formation. J. Mol. Biol. 373, 562–572 (2007).
doi: 10.1016/j.jmb.2007.07.032
MacDougall, D. D. & Gonzalez, R. L. Jr. Translation initiation factor 3 regulates switching between different modes of ribosomal subunit joining. J. Mol. Biol. 427, 1801–1818 (2015).
doi: 10.1016/j.jmb.2014.09.024
Gualerzi, C. O. & Pon, C. L. Initiation of mRNA translation in bacteria: structural and dynamic aspects. Cell. Mol. Life Sci. 72, 4341–4367 (2015).
doi: 10.1007/s00018-015-2010-3
Wilson, D. N. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat. Rev. Microbiol. 12, 35–48 (2014).
doi: 10.1038/nrmicro3155
López-Alonso, J. P. et al. Structure of a 30S pre-initiation complex stalled by GE81112 reveals structural parallels in bacterial and eukaryotic protein synthesis initiation pathways. Nucleic Acids Res. 45, 2179–2187 (2017).
doi: 10.1093/nar/gkx324
Goyal, A., Belardinelli, R., Maracci, C., Milón, P. & Rodnina, M. V. Directional transition from initiation to elongation in bacterial translation. Nucleic Acids Res. 43, 10700–10712 (2015).
doi: 10.1093/nar/gkv869
Huang, C., Mandava, C. S. & Sanyal, S. The ribosomal stalk plays a key role in IF2-mediated association of the ribosomal subunits. J. Mol. Biol. 399, 145–153 (2010).
doi: 10.1016/j.jmb.2010.04.009
Tomsic, J. et al. Late events of translation initiation in bacteria: a kinetic analysis. EMBO J. 19, 2127–2136 (2000).
doi: 10.1093/emboj/19.9.2127
Ling, C. & Ermolenko, D. N. Initiation factor 2 stabilizes the ribosome in a semirotated conformation. Proc. Natl Acad. Sci. USA 112, 15874–15879 (2015).
doi: 10.1073/pnas.1520337112
Marshall, R. A., Aitken, C. E. & Puglisi, J. D. GTP hydrolysis by IF2 guides progression of the ribosome into elongation. Mol. Cell 35, 37–47 (2009).
doi: 10.1016/j.molcel.2009.06.008
La Teana, A., Pon, C. L. & Gualerzi, C. O. Late events in translation initiation. Adjustment of fMet-tRNA in the ribosomal P-site. J. Mol. Biol. 256, 667–675 (1996).
doi: 10.1006/jmbi.1996.0116
Chen, B. et al. Structural dynamics of ribosome subunit association studied by mixing-spraying time-resolved cryogenic electron microscopy. Structure 23, 1097–1105 (2015).
doi: 10.1016/j.str.2015.04.007
Fu, Z. et al. Key intermediates in ribosome recycling visualized by time-resolved cryoelectron microscopy. Structure 24, 2092–2101 (2016).
doi: 10.1016/j.str.2016.09.014
Lu, Z. et al. Monolithic microfluidic mixing-spraying devices for time-resolved cryo-electron microscopy. J. Struct. Biol. 168, 388–395 (2009).
doi: 10.1016/j.jsb.2009.08.004
Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35 (2013).
doi: 10.1016/j.ultramic.2013.06.004
Trabuco, L. G., Villa, E., Mitra, K., Frank, J. & Schulten, K. Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16, 673–683 (2008).
doi: 10.1016/j.str.2008.03.005
Wang, J., Liu, Z., Frank, J. & Moore, P. B. Identification of ions in experimental electrostatic potential maps. IUCrJ 5, 375–381 (2018).
doi: 10.1107/S2052252518006292
Caban, K., Pavlov, M., Ehrenberg, M. & Gonzalez, R. L. Jr. A conformational switch in initiation factor 2 controls the fidelity of translation initiation in bacteria. Nat. Commun. 8, 1475 (2017).
doi: 10.1038/s41467-017-01492-6
Fei, J. et al. A highly purified, fluorescently labeled in vitro translation system for single-molecule studies of protein synthesis. Methods Enzymol. 472, 221–259 (2010).
doi: 10.1016/S0076-6879(10)72008-5
Wang, J., Caban, K. & Gonzalez, R. L. Jr. Ribosomal initiation complex-driven changes in the stability and dynamics of initiation factor 2 regulate the fidelity of translation initiation. J. Mol. Biol. 427, 1819–1834 (2015).
doi: 10.1016/j.jmb.2014.12.025
Elvekrog, M. M. & Gonzalez, R. L. Jr. Conformational selection of translation initiation factor 3 signals proper substrate selection. Nat. Struct. Mol. Biol. 20, 628–633 (2013).
doi: 10.1038/nsmb.2554
Guenneugues, M. et al. Mapping the fMet-tRNA
doi: 10.1093/emboj/19.19.5233
Antoun, A., Pavlov, M. Y., Lovmar, M. & Ehrenberg, M. How initiation factors tune the rate of initiation of protein synthesis in bacteria. EMBO J. 25, 2539–2550 (2006).
doi: 10.1038/sj.emboj.7601140
Grigoriadou, C., Marzi, S., Pan, D., Gualerzi, C. O. & Cooperman, B. S. The translational fidelity function of IF3 during transition from the 30 S initiation complex to the 70 S initiation complex. J. Mol. Biol. 373, 551–561 (2007).
doi: 10.1016/j.jmb.2007.07.031
Fabbretti, A. et al. The real-time path of translation factor IF3 onto and off the ribosome. Mol. Cell 25, 285–296 (2007).
doi: 10.1016/j.molcel.2006.12.011
Russo, C. J. & Passmore, L. A. Electron microscopy: ultrastable gold substrates for electron cryomicroscopy. Science 346, 1377–1380 (2014).
doi: 10.1126/science.1259530
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).
doi: 10.1038/nmeth.4193
Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).
doi: 10.1016/j.jsb.2015.08.008
Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).
doi: 10.1016/j.jsb.2012.09.006
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
doi: 10.1002/jcc.20084
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).
doi: 10.1107/S0907444904019158
Kaledhonkar, S., Fu, Z., White, H. & Frank, J. in Protein Complex Assembly: Methods and Protocols (ed. Marsh, J. A.) 59–71 (Humana, 2018).
Tan, Y.Z., Baldwin, P.R., Davis, J.H., Williamson, J.R., Potter, C.S., Carragher, B. & Lyumkis, D. Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods 14, 793–796 (2017).
doi: 10.1038/nmeth.4347
Raw, A. S., Coleman, D. E., Gilman, A. G. & Sprang, S. R. Structural and biochemical characterization of the GTPγS-, GDP·P
doi: 10.1021/bi971912p

Auteurs

Sandip Kaledhonkar (S)

Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, USA.

Ziao Fu (Z)

Integrated Program in Cellular, Molecular and Biophysical Studies, Columbia University, College of Physicians and Surgeons, New York, NY, USA.

Kelvin Caban (K)

Department of Chemistry, Columbia University, New York, NY, USA.

Wen Li (W)

Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, USA.

Bo Chen (B)

Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, USA.

Ming Sun (M)

Department of Biological Sciences, Columbia University, New York, NY, USA.

Ruben L Gonzalez (RL)

Department of Chemistry, Columbia University, New York, NY, USA. rlg2118@columbia.edu.

Joachim Frank (J)

Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, USA. jf2192@cumc.columbia.edu.
Department of Biological Sciences, Columbia University, New York, NY, USA. jf2192@cumc.columbia.edu.

Articles similaires

Humans Meals Time Factors Female Adult

Vancomycin-associated DRESS demonstrates delay in AST abnormalities.

Ahmed Hussein, Kateri L Schoettinger, Jourdan Hydol-Smith et al.
1.00
Humans Drug Hypersensitivity Syndrome Vancomycin Female Male
Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Humans Male Female Aged Middle Aged

Classifications MeSH