Late steps in bacterial translation initiation visualized using time-resolved cryo-EM.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
06 2019
06 2019
Historique:
received:
27
07
2018
accepted:
08
05
2019
pubmed:
21
5
2019
medline:
6
2
2020
entrez:
21
5
2019
Statut:
ppublish
Résumé
The initiation of bacterial translation involves the tightly regulated joining of the 50S ribosomal subunit to an initiator transfer RNA (fMet-tRNA
Identifiants
pubmed: 31108498
doi: 10.1038/s41586-019-1249-5
pii: 10.1038/s41586-019-1249-5
pmc: PMC7060745
mid: NIHMS1528928
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
400-404Subventions
Organisme : NIGMS NIH HHS
ID : R37 GM029169
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM029169
Pays : United States
Organisme : NIH HHS
ID : GM 29169
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM055440
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM084288
Pays : United States
Références
Antoun, A., Pavlov, M. Y., Andersson, K., Tenson, T. & Ehrenberg, M. The roles of initiation factor 2 and guanosine triphosphate in initiation of protein synthesis. EMBO J. 22, 5593–5601 (2003).
doi: 10.1093/emboj/cdg525
Hussain, T., Llacer, J. L., Wimberly, B. T., Kieft, J. S. & Ramakrishnan, V. Large-scale movements of IF3 and tRNA during bacterial translation initiation. Cell 167, 133–144.e13 (2016).
doi: 10.1016/j.cell.2016.08.074
Julián, P. et al. The Cryo-EM structure of a complete 30S translation initiation complex from Escherichia coli. PLoS Biol. 9, e1001095 (2011).
doi: 10.1371/journal.pbio.1001095
Simonetti, A. et al. Involvement of protein IF2 N domain in ribosomal subunit joining revealed from architecture and function of the full-length initiation factor. Proc. Natl Acad. Sci. USA 110, 15656–15661 (2013).
doi: 10.1073/pnas.1309578110
Simonetti, A. et al. Structure of the 30S translation initiation complex. Nature 455, 416–420 (2008).
doi: 10.1038/nature07192
Allen, G. S., Zavialov, A., Gursky, R., Ehrenberg, M. & Frank, J. The cryo-EM structure of a translation initiation complex from Escherichia coli. Cell 121, 703–712 (2005).
doi: 10.1016/j.cell.2005.03.023
Myasnikov, A. G. et al. Conformational transition of initiation factor 2 from the GTP- to GDP-bound state visualized on the ribosome. Nat. Struct. Mol. Biol. 12, 1145–1149 (2005).
doi: 10.1038/nsmb1012
Sprink, T. et al. Structures of ribosome-bound initiation factor 2 reveal the mechanism of subunit association. Sci. Adv. 2, e1501502 (2016).
doi: 10.1126/sciadv.1501502
Frank, J. Time-resolved cryo-electron microscopy: Recent progress. J. Struct. Biol. 200, 303–306 (2017).
doi: 10.1016/j.jsb.2017.06.005
Antoun, A., Pavlov, M. Y., Lovmar, M. & Ehrenberg, M. How initiation factors maximize the accuracy of tRNA selection in initiation of bacterial protein synthesis. Mol. Cell 23, 183–193 (2006).
doi: 10.1016/j.molcel.2006.05.030
Caban, K. & Gonzalez, R. L. Jr. The emerging role of rectified thermal fluctuations in initiator aa-tRNA- and start codon selection during translation initiation. Biochimie 114, 30–38 (2015).
doi: 10.1016/j.biochi.2015.04.001
Milon, P., Konevega, A. L., Gualerzi, C. O. & Rodnina, M. V. Kinetic checkpoint at a late step in translation initiation. Mol. Cell 30, 712–720 (2008).
doi: 10.1016/j.molcel.2008.04.014
Milón, P. & Rodnina, M. V. Kinetic control of translation initiation in bacteria. Crit. Rev. Biochem. Mol. Biol. 47, 334–348 (2012).
doi: 10.3109/10409238.2012.678284
Grigoriadou, C., Marzi, S., Kirillov, S., Gualerzi, C. O. & Cooperman, B. S. A quantitative kinetic scheme for 70 S translation initiation complex formation. J. Mol. Biol. 373, 562–572 (2007).
doi: 10.1016/j.jmb.2007.07.032
MacDougall, D. D. & Gonzalez, R. L. Jr. Translation initiation factor 3 regulates switching between different modes of ribosomal subunit joining. J. Mol. Biol. 427, 1801–1818 (2015).
doi: 10.1016/j.jmb.2014.09.024
Gualerzi, C. O. & Pon, C. L. Initiation of mRNA translation in bacteria: structural and dynamic aspects. Cell. Mol. Life Sci. 72, 4341–4367 (2015).
doi: 10.1007/s00018-015-2010-3
Wilson, D. N. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat. Rev. Microbiol. 12, 35–48 (2014).
doi: 10.1038/nrmicro3155
López-Alonso, J. P. et al. Structure of a 30S pre-initiation complex stalled by GE81112 reveals structural parallels in bacterial and eukaryotic protein synthesis initiation pathways. Nucleic Acids Res. 45, 2179–2187 (2017).
doi: 10.1093/nar/gkx324
Goyal, A., Belardinelli, R., Maracci, C., Milón, P. & Rodnina, M. V. Directional transition from initiation to elongation in bacterial translation. Nucleic Acids Res. 43, 10700–10712 (2015).
doi: 10.1093/nar/gkv869
Huang, C., Mandava, C. S. & Sanyal, S. The ribosomal stalk plays a key role in IF2-mediated association of the ribosomal subunits. J. Mol. Biol. 399, 145–153 (2010).
doi: 10.1016/j.jmb.2010.04.009
Tomsic, J. et al. Late events of translation initiation in bacteria: a kinetic analysis. EMBO J. 19, 2127–2136 (2000).
doi: 10.1093/emboj/19.9.2127
Ling, C. & Ermolenko, D. N. Initiation factor 2 stabilizes the ribosome in a semirotated conformation. Proc. Natl Acad. Sci. USA 112, 15874–15879 (2015).
doi: 10.1073/pnas.1520337112
Marshall, R. A., Aitken, C. E. & Puglisi, J. D. GTP hydrolysis by IF2 guides progression of the ribosome into elongation. Mol. Cell 35, 37–47 (2009).
doi: 10.1016/j.molcel.2009.06.008
La Teana, A., Pon, C. L. & Gualerzi, C. O. Late events in translation initiation. Adjustment of fMet-tRNA in the ribosomal P-site. J. Mol. Biol. 256, 667–675 (1996).
doi: 10.1006/jmbi.1996.0116
Chen, B. et al. Structural dynamics of ribosome subunit association studied by mixing-spraying time-resolved cryogenic electron microscopy. Structure 23, 1097–1105 (2015).
doi: 10.1016/j.str.2015.04.007
Fu, Z. et al. Key intermediates in ribosome recycling visualized by time-resolved cryoelectron microscopy. Structure 24, 2092–2101 (2016).
doi: 10.1016/j.str.2016.09.014
Lu, Z. et al. Monolithic microfluidic mixing-spraying devices for time-resolved cryo-electron microscopy. J. Struct. Biol. 168, 388–395 (2009).
doi: 10.1016/j.jsb.2009.08.004
Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35 (2013).
doi: 10.1016/j.ultramic.2013.06.004
Trabuco, L. G., Villa, E., Mitra, K., Frank, J. & Schulten, K. Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16, 673–683 (2008).
doi: 10.1016/j.str.2008.03.005
Wang, J., Liu, Z., Frank, J. & Moore, P. B. Identification of ions in experimental electrostatic potential maps. IUCrJ 5, 375–381 (2018).
doi: 10.1107/S2052252518006292
Caban, K., Pavlov, M., Ehrenberg, M. & Gonzalez, R. L. Jr. A conformational switch in initiation factor 2 controls the fidelity of translation initiation in bacteria. Nat. Commun. 8, 1475 (2017).
doi: 10.1038/s41467-017-01492-6
Fei, J. et al. A highly purified, fluorescently labeled in vitro translation system for single-molecule studies of protein synthesis. Methods Enzymol. 472, 221–259 (2010).
doi: 10.1016/S0076-6879(10)72008-5
Wang, J., Caban, K. & Gonzalez, R. L. Jr. Ribosomal initiation complex-driven changes in the stability and dynamics of initiation factor 2 regulate the fidelity of translation initiation. J. Mol. Biol. 427, 1819–1834 (2015).
doi: 10.1016/j.jmb.2014.12.025
Elvekrog, M. M. & Gonzalez, R. L. Jr. Conformational selection of translation initiation factor 3 signals proper substrate selection. Nat. Struct. Mol. Biol. 20, 628–633 (2013).
doi: 10.1038/nsmb.2554
Guenneugues, M. et al. Mapping the fMet-tRNA
doi: 10.1093/emboj/19.19.5233
Antoun, A., Pavlov, M. Y., Lovmar, M. & Ehrenberg, M. How initiation factors tune the rate of initiation of protein synthesis in bacteria. EMBO J. 25, 2539–2550 (2006).
doi: 10.1038/sj.emboj.7601140
Grigoriadou, C., Marzi, S., Pan, D., Gualerzi, C. O. & Cooperman, B. S. The translational fidelity function of IF3 during transition from the 30 S initiation complex to the 70 S initiation complex. J. Mol. Biol. 373, 551–561 (2007).
doi: 10.1016/j.jmb.2007.07.031
Fabbretti, A. et al. The real-time path of translation factor IF3 onto and off the ribosome. Mol. Cell 25, 285–296 (2007).
doi: 10.1016/j.molcel.2006.12.011
Russo, C. J. & Passmore, L. A. Electron microscopy: ultrastable gold substrates for electron cryomicroscopy. Science 346, 1377–1380 (2014).
doi: 10.1126/science.1259530
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).
doi: 10.1038/nmeth.4193
Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).
doi: 10.1016/j.jsb.2015.08.008
Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).
doi: 10.1016/j.jsb.2012.09.006
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
doi: 10.1002/jcc.20084
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).
doi: 10.1107/S0907444904019158
Kaledhonkar, S., Fu, Z., White, H. & Frank, J. in Protein Complex Assembly: Methods and Protocols (ed. Marsh, J. A.) 59–71 (Humana, 2018).
Tan, Y.Z., Baldwin, P.R., Davis, J.H., Williamson, J.R., Potter, C.S., Carragher, B. & Lyumkis, D. Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods 14, 793–796 (2017).
doi: 10.1038/nmeth.4347
Raw, A. S., Coleman, D. E., Gilman, A. G. & Sprang, S. R. Structural and biochemical characterization of the GTPγS-, GDP·P
doi: 10.1021/bi971912p