Development of a novel multiphysical approach for the characterization of mechanical properties of musculotendinous tissues.
Achilles Tendon
/ physiology
Animals
DNA-Binding Proteins
/ deficiency
Elastic Modulus
Elasticity Imaging Techniques
/ methods
Female
Magnetic Resonance Imaging
Mice
Mice, Knockout
Microscopy, Atomic Force
/ methods
Microscopy, Electron
Muscle Fibers, Skeletal
/ physiology
Muscle, Skeletal
/ physiology
Sarcomeres
/ physiology
Tendons
/ physiology
Transcription Factors
/ deficiency
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
22 05 2019
22 05 2019
Historique:
received:
17
09
2018
accepted:
03
05
2019
entrez:
24
5
2019
pubmed:
24
5
2019
medline:
23
10
2020
Statut:
epublish
Résumé
At present, there is a lack of well-validated protocols that allow for the analysis of the mechanical properties of muscle and tendon tissues. Further, there are no reports regarding characterization of mouse skeletal muscle and tendon mechanical properties in vivo using elastography thereby limiting the ability to monitor changes in these tissues during disease progression or response to therapy. Therefore, we sought to develop novel protocols for the characterization of mechanical properties in musculotendinous tissues using atomic force microscopy (AFM) and ultrasound elastography. Given that TIEG1 knockout (KO) mice exhibit well characterized defects in the mechanical properties of skeletal muscle and tendon tissue, we have chosen to use this model system in the present study. Using TIEG1 knockout and wild-type mice, we have devised an AFM protocol that does not rely on the use of glue or chemical agents for muscle and tendon fiber immobilization during acquisition of transversal cartographies of elasticity and topography. Additionally, since AFM cannot be employed on live animals, we have also developed an ultrasound elastography protocol using a new linear transducer, SLH20-6 (resolution: 38 µm, footprint: 2.38 cm), to characterize the musculotendinous system in vivo. This protocol allows for the identification of changes in muscle and tendon elasticities. Such innovative technological approaches have no equivalent to date, promise to accelerate our understanding of musculotendinous mechanical properties and have numerous research and clinical applications.
Identifiants
pubmed: 31118478
doi: 10.1038/s41598-019-44053-1
pii: 10.1038/s41598-019-44053-1
pmc: PMC6531478
doi:
Substances chimiques
DNA-Binding Proteins
0
Tieg1 protein, mouse
0
Transcription Factors
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
7733Subventions
Organisme : NIDCR NIH HHS
ID : R01 DE014036
Pays : United States
Références
Mol Ther. 2009 Jan;17(1):19-25
pubmed: 19002166
Muscle Nerve. 2011 Jun;43(6):878-86
pubmed: 21488051
Biomed Res Int. 2017;2017:5387948
pubmed: 29445740
Sci Rep. 2018 Sep 28;8(1):14532
pubmed: 30266928
Sci Rep. 2017 Jul 11;7(1):5117
pubmed: 28698636
J Biomed Biotechnol. 2010;2010:981945
pubmed: 20396399
Nucleic Acids Res. 1995 Dec 11;23(23):4907-12
pubmed: 8532536
Sci Rep. 2018 May 29;8(1):8305
pubmed: 29844489
Mol Cell Biol. 2005 Feb;25(3):1191-9
pubmed: 15657444
J Bone Miner Res. 2014;29(5):1206-16
pubmed: 24190163
Nat Chem Biol. 2009 Jun;5(6):383-90
pubmed: 19448607
PLoS One. 2015 Feb 24;10(2):e0117835
pubmed: 25710816
Nat Methods. 2005 Jul;2(7):515-20
pubmed: 15973422
Nat Nanotechnol. 2017 Apr 6;12(4):295-307
pubmed: 28383040
PLoS One. 2017 Jan 11;12(1):e0169864
pubmed: 28076414
Nat Cell Biol. 2001 Jun;3(6):607-10
pubmed: 11389447
J Appl Physiol (1985). 2010 Jun;108(6):1706-10
pubmed: 20378701
Mol Endocrinol. 2008 Jul;22(7):1579-95
pubmed: 18483178
J Histochem Cytochem. 1993 May;41(5):733-43
pubmed: 8468455
Comput Methods Programs Biomed. 2009 Apr;94(1):66-76
pubmed: 18922598
PLoS One. 2016 Oct 13;11(10):e0164566
pubmed: 27736981
Exp Cell Res. 2004 Nov 15;301(1):1-7
pubmed: 15501438
J Biomech. 2015 Jul 16;48(10):1687-92
pubmed: 26091619
Radiology. 2014 Dec;273(3):726-35
pubmed: 25105354
Arch Pathol Lab Med. 1976 Aug;100(8):405-14
pubmed: 60092
Eur J Appl Physiol. 2018 Mar;118(3):585-593
pubmed: 29327169
J Appl Physiol (1985). 2006 Nov;101(5):1419-24
pubmed: 16794021
J Biomech. 2006;39(3):568-78
pubmed: 16389097
Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6370-5
pubmed: 23576745
Nat Nanotechnol. 2007 Dec;2(12):780-3
pubmed: 18654431
Nat Nanotechnol. 2008 May;3(5):261-9
pubmed: 18654521
Biophys J. 2010 Feb 3;98(3):418-24
pubmed: 20141755
Biol Cell. 2003 Sep;95(6):399-406
pubmed: 14519557
Oncogene. 2002 Aug 22;21(37):5783-90
pubmed: 12173049
Am J Physiol Cell Physiol. 2002 Oct;283(4):C1219-27
pubmed: 12225985
Magn Reson Imaging. 1999 Nov;17(9):1393-7
pubmed: 10576724
Muscle Nerve. 2017 Mar;55(3):410-416
pubmed: 27421714
J Ultrastruct Res. 1969 Jan;26(1):31-43
pubmed: 4887011
Bone. 2006 Dec;39(6):1244-51
pubmed: 16876494
J Biomech. 2013 Feb 22;46(4):813-8
pubmed: 23219277
Exp Cell Res. 2011 Jul 15;317(12):1726-35
pubmed: 21620830
Nat Nanotechnol. 2012 Nov;7(11):757-65
pubmed: 23085644
J Biomech. 2014 Feb 07;47(3):687-93
pubmed: 24360198
Microsc Res Tech. 2005 May;67(1):27-35
pubmed: 16025488
Nat Methods. 2012 Jul;9(7):671-5
pubmed: 22930834
J Struct Biol. 2011 Feb;173(2):197-201
pubmed: 21111050