Prefrontal Coexpression of Schizophrenia Risk Genes Is Associated With Treatment Response in Patients.


Journal

Biological psychiatry
ISSN: 1873-2402
Titre abrégé: Biol Psychiatry
Pays: United States
ID NLM: 0213264

Informations de publication

Date de publication:
01 07 2019
Historique:
received: 27 06 2018
revised: 13 03 2019
accepted: 14 03 2019
pubmed: 28 5 2019
medline: 11 6 2020
entrez: 26 5 2019
Statut: ppublish

Résumé

Gene coexpression networks are relevant to functional and clinical translation of schizophrenia risk genes. We hypothesized that schizophrenia risk genes converge into coexpression pathways that may be associated with gene regulation mechanisms and with response to treatment in patients with schizophrenia. We identified gene coexpression networks in two prefrontal cortex postmortem RNA sequencing datasets (n = 688) and replicated them in four more datasets (n = 1295). We identified and replicated (p values < .001) a single module enriched for schizophrenia risk loci (13 risk genes in 10 loci). In silico screening of potential regulators of the schizophrenia risk module via bioinformatic analyses identified two transcription factors and three microRNAs associated with the risk module. To translate postmortem information into clinical phenotypes, we identified polymorphisms predicting coexpression and combined them to obtain an index approximating module coexpression (Polygenic Coexpression Index [PCI]). The PCI-coexpression association was successfully replicated in two independent brain transcriptome datasets (n = 131; p values < .05). Finally, we tested the association between the PCI and short-term treatment response in two independent samples of patients with schizophrenia treated with olanzapine (n = 167). The PCI was associated with treatment response in the positive symptom domain in both clinical cohorts (p values < .05). In summary, our findings in 1983 samples of human postmortem prefrontal cortex show that coexpression of a set of genes enriched for schizophrenia risk genes is relevant to treatment response. This coexpression pathway may be coregulated by transcription factors and microRNA associated with it.

Sections du résumé

BACKGROUND
Gene coexpression networks are relevant to functional and clinical translation of schizophrenia risk genes. We hypothesized that schizophrenia risk genes converge into coexpression pathways that may be associated with gene regulation mechanisms and with response to treatment in patients with schizophrenia.
METHODS
We identified gene coexpression networks in two prefrontal cortex postmortem RNA sequencing datasets (n = 688) and replicated them in four more datasets (n = 1295). We identified and replicated (p values < .001) a single module enriched for schizophrenia risk loci (13 risk genes in 10 loci). In silico screening of potential regulators of the schizophrenia risk module via bioinformatic analyses identified two transcription factors and three microRNAs associated with the risk module. To translate postmortem information into clinical phenotypes, we identified polymorphisms predicting coexpression and combined them to obtain an index approximating module coexpression (Polygenic Coexpression Index [PCI]).
RESULTS
The PCI-coexpression association was successfully replicated in two independent brain transcriptome datasets (n = 131; p values < .05). Finally, we tested the association between the PCI and short-term treatment response in two independent samples of patients with schizophrenia treated with olanzapine (n = 167). The PCI was associated with treatment response in the positive symptom domain in both clinical cohorts (p values < .05).
CONCLUSIONS
In summary, our findings in 1983 samples of human postmortem prefrontal cortex show that coexpression of a set of genes enriched for schizophrenia risk genes is relevant to treatment response. This coexpression pathway may be coregulated by transcription factors and microRNA associated with it.

Identifiants

pubmed: 31126695
pii: S0006-3223(19)31152-7
doi: 10.1016/j.biopsych.2019.03.981
pii:
doi:

Substances chimiques

Antipsychotic Agents 0
Olanzapine N7U69T4SZR

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

45-55

Informations de copyright

Copyright © 2019 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

Auteurs

Giulio Pergola (G)

Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy; Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland. Electronic address: giulio.pergola@uniba.it.

Pasquale Di Carlo (P)

Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy; Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland.

Andrew E Jaffe (AE)

Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Center for Computational Biology, Johns Hopkins University, Baltimore, Maryland.

Marco Papalino (M)

Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy.

Qiang Chen (Q)

Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland.

Thomas M Hyde (TM)

Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland.

Joel E Kleinman (JE)

Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland.

Joo Heon Shin (JH)

Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland.

Antonio Rampino (A)

Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy; Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy.

Giuseppe Blasi (G)

Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy; Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy.

Daniel R Weinberger (DR)

Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.

Alessandro Bertolino (A)

Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy; Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy. Electronic address: alessandro.bertolino@uniba.it.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH