Should the septum be included in the assessment of right ventricular longitudinal strain? An ultrasound two-dimensional speckle-tracking stress study.
Adult
Biomechanical Phenomena
Echocardiography, Doppler
Echocardiography, Stress
/ methods
Exercise Test
Feasibility Studies
Female
Healthy Volunteers
Humans
Male
Middle Aged
Predictive Value of Tests
Prospective Studies
Reproducibility of Results
Systole
Ventricular Function, Right
Ventricular Septum
/ diagnostic imaging
Young Adult
Exercise echocardiography
Longitudinal strain
Right ventricle
Journal
The international journal of cardiovascular imaging
ISSN: 1875-8312
Titre abrégé: Int J Cardiovasc Imaging
Pays: United States
ID NLM: 100969716
Informations de publication
Date de publication:
Oct 2019
Oct 2019
Historique:
received:
08
03
2019
accepted:
18
05
2019
pubmed:
28
5
2019
medline:
4
12
2019
entrez:
27
5
2019
Statut:
ppublish
Résumé
Right ventricular longitudinal strain (RVLS) by 2D speckle-tracking echocardiography (2D-STE) is a useful parameter for assessing systolic function. However, the exact method to perform it is not well defined as some authors evaluate only free wall (FW) segments while others include all six RV segments. To compare the assessment of RVLS at rest and during exercise by these two approaches. Echocardiography was performed on 80 healthy subjects at rest and during exercise. The analysis consisted of standard and 2D-STE assessment of RV global and segmental strain tracing only RVFW and also tracing all six RV segments. At rest, RVLS could be assessed in 78 (feasibility 97.5%) subjects by both methods. However, during exercise, RVLS by RVFW method was feasible in 67 (83.8%) as compared to 74 (92.5%) by RV6S approach. Both at rest and during exercise, RVLS values by the two methods showed excellent correlation (r = > 0.90). However, RVLS values assessed by RV6S were lower (absolute values) than those by RVFW approach (RV6S vs. RVFW; rest: - 27.0 ± 3.9 vs. - 9.5 ± 3.9, p < 0.001 and exercise: - 30.7 ± 5.2 vs. - 33.3 ± 5.1, p < 0.001). Furthermore, basal strain was higher and apical strain lower (absolute values) by RV6S approach. At rest, reproducibility for RVLS was excellent and similar for the two methods. However, during exercise, reproducibility for RVFW method was poorer, especially at the apex. The two currently described methods for RVLS assessment by 2D-STE demonstrated excellent agreement. However, the RV6S approach seemed to be more feasible and reproducible, particularly during exercise. Moreover, global and segmental strain values are different with both methods and should not be interchanged.
Identifiants
pubmed: 31129743
doi: 10.1007/s10554-019-01633-6
pii: 10.1007/s10554-019-01633-6
doi:
Types de publication
Comparative Study
Journal Article
Observational Study
Langues
eng
Sous-ensembles de citation
IM
Pagination
1853-1860Subventions
Organisme : Agència de Gestió d'Ajuts Universitaris i de Recerca
ID : RH 040991
Organisme : Ministerio de Economía, Industria y Competitividad, Gobierno de España (ES)
ID : DEP2013-44923-P
Références
J Am Soc Echocardiogr. 2008 Mar;21(3):275-83
pubmed: 17961979
Am J Physiol Heart Circ Physiol. 2015 Dec 15;309(12):H2067-76
pubmed: 26475589
J Am Soc Echocardiogr. 2019 Mar;32(3):385-393
pubmed: 30552030
Circ J. 2013;77(3):756-63
pubmed: 23220860
Blood Press Monit. 2017 Dec;22(6):339-344
pubmed: 28957819
Echo Res Pract. 2014 Sep 1;1(1):31-41
pubmed: 26693290
J Am Soc Echocardiogr. 2012 Sep;25(9):997-1006
pubmed: 22727198
Circ Cardiovasc Imaging. 2010 May;3(3):264-71
pubmed: 20190280
Heart. 2016 Feb;102(3):209-15
pubmed: 26715570
Eur J Prev Cardiol. 2016 Jul;23(10):1114-24
pubmed: 26656281
J Am Soc Echocardiogr. 2018 May;31(5):527-550.e11
pubmed: 29573927
Circ Res. 1976 Sep;39(3):304-13
pubmed: 782742
Circulation. 2013 Oct 29;128(18):2005-15
pubmed: 24056689
Am J Cardiol. 2013 May 1;111(9):1344-50
pubmed: 23411103
Circ Cardiovasc Imaging. 2016 Feb;9(2):e003866
pubmed: 26860970
Circ Cardiovasc Imaging. 2018 Jan;11(1):e006894
pubmed: 29321212
J Am Soc Echocardiogr. 2014 Jul;27(7):726-32
pubmed: 24679740
Eur Heart J Cardiovasc Imaging. 2015 Mar;16(3):233-70
pubmed: 25712077
Eur J Cardiothorac Surg. 2006 Apr;29 Suppl 1:S272-8
pubmed: 16567103
Int J Cardiol. 2017 Jan 15;227:209-216
pubmed: 27839803
Eur J Appl Physiol. 2017 Mar;117(3):389-396
pubmed: 28150069
Int J Cardiovasc Imaging. 2015 Dec;31(8):1503-9
pubmed: 26245470
Eur Heart J Cardiovasc Imaging. 2018 Jun 1;19(6):591-600
pubmed: 29596561
J Am Soc Echocardiogr. 2017 Feb;30(2):101-138
pubmed: 28164802
J Am Soc Echocardiogr. 2010 Jul;23(7):685-713; quiz 786-8
pubmed: 20620859
Prog Cardiovasc Dis. 1998 Jan-Feb;40(4):289-308
pubmed: 9449956
J Am Soc Echocardiogr. 2017 Apr;30(4):372-392
pubmed: 28385280
Eur J Sport Sci. 2017 Jul;17(6):720-726
pubmed: 28287029
Eur Heart J. 2015 Aug 7;36(30):1998-2010
pubmed: 26038590
J Am Soc Echocardiogr. 2017 Jul;30(7):676-684.e1
pubmed: 28669395
JACC Cardiovasc Imaging. 2015 May;8(5):514-522
pubmed: 25890585
PLoS One. 2015 Dec 23;10(12):e0143907
pubmed: 26700308
J Am Soc Echocardiogr. 2016 Mar;29(3):259-66
pubmed: 26944627
J Cardiovasc Ultrasound. 2015 Jun;23(2):91-9
pubmed: 26140151
J Am Soc Echocardiogr. 2012 Mar;25(3):253-262.e1
pubmed: 22192334