Antibacterial activity of lysozyme-chitosan oligosaccharide conjugates (LYZOX) against Pseudomonas aeruginosa, Acinetobacter baumannii and Methicillin-resistant Staphylococcus aureus.
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2019
2019
Historique:
received:
15
01
2019
accepted:
12
05
2019
entrez:
29
5
2019
pubmed:
29
5
2019
medline:
29
1
2020
Statut:
epublish
Résumé
The recent emergence of antibiotic-resistant bacteria requires the development of new antibiotics or new agents capable of enhancing antibiotic activity. This study evaluated the antibacterial activity of lysozyme-chitosan oligosaccharide conjugates (LYZOX) against Pseudomonas aeruginosa, Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus (MRSA), which should resolve the problem of antibiotic-resistant bacteria. Bactericidal tests showed that LYZOX killed 50% more P. aeruginosa (NBRC 13275), A. baumannii and MRSA than the control treatment after 60 min. In addition, LYZOX was shown to inhibit the growth of P. aeruginosa (NBRC 13275 and PAO1), A. baumannii and MRSA better than its components. To elucidate the antibacterial mechanism of LYZOX, we performed cell membrane integrity assays, N-phenyl-1-naphthylamine assays, 2-nitrophenyl β-D-galactopyranoside assays and confocal laser scanning microscopy. These results showed that LYZOX affected bacterial cell walls and increased the permeability of the outer membrane and the plasma membrane. Furthermore, each type of bacteria treated with LYZOX was observed by electron microscopy. Electron micrographs revealed that these bacteria had the morphological features of both lysozyme-treated and chitosan oligosaccharide-treated bacteria and that LYZOX destroyed bacterial cell walls, which caused the release of intracellular contents from cells. An acquired drug resistance test revealed that these bacteria were not able to acquire resistance to LYZOX. The hemolytic toxicity test demonstrated the low hemolytic activity of LYZOX. In conclusion, LYZOX exhibited antibacterial activity and low drug resistance in the presence of P. aeruginosa, A. baumannii and MRSA and showed low hemolytic toxicity. LYZOX affected bacterial membranes, leading to membrane disruption and the release of intracellular contents and consequent bacterial cell death. LYZOX may serve as a novel candidate drug that could be used for the control of refractory infections.
Identifiants
pubmed: 31136634
doi: 10.1371/journal.pone.0217504
pii: PONE-D-19-01327
pmc: PMC6538184
doi:
Substances chimiques
Anti-Bacterial Agents
0
Oligosaccharides
0
Chitosan
9012-76-4
Muramidase
EC 3.2.1.17
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0217504Déclaration de conflit d'intérêts
A. Saito. and H. K. are employees of Wako Filter Technology Co., Ltd. Y. M. and D. M. are funded by Wako Filter Technology Co., Ltd. The rest of the authors have no conflicts of interest to declare. This does not alter our adherence to PLOS ONE policies on sharing data and materials.
Références
Curr Opin Immunol. 2001 Feb;13(1):89-95
pubmed: 11154923
Colloids Surf B Biointerfaces. 2008 Sep 1;65(2):197-202
pubmed: 18508247
Amino Acids. 2016 Feb;48(2):505-22
pubmed: 26450121
Trends Microbiol. 2014 Jan;22(1):42-7
pubmed: 24331435
Mar Drugs. 2015 Aug 14;13(8):5156-86
pubmed: 26287217
Int J Food Microbiol. 2001 Dec 30;71(2-3):235-44
pubmed: 11789941
Food Chem. 2012 Dec 15;135(4):2397-403
pubmed: 22980819
Biochem J. 2005 Oct 15;391(Pt 2):167-75
pubmed: 15932346
Int J Food Microbiol. 2004 Sep 1;95(2):147-55
pubmed: 15282127
J Bacteriol. 1955 Nov;70(5):614-9
pubmed: 13271300
ACS Appl Mater Interfaces. 2017 May 3;9(17):15022-15030
pubmed: 28393523
Mol Pharm. 2016 Oct 3;13(10):3578-3589
pubmed: 27589087
Acta Biomater. 2010 Jul;6(7):2562-71
pubmed: 20060936
J Bacteriol. 1971 Mar;105(3):1184-99
pubmed: 4100836
Biomaterials. 2002 Aug;23(16):3359-68
pubmed: 12099278
Biosci Biotechnol Biochem. 2003 Nov;67(11):2334-43
pubmed: 14646191
Carbohydr Polym. 2017 Oct 15;174:369-376
pubmed: 28821080
Nahrung. 2000 Jun;44(3):201-6
pubmed: 10907243
Molecules. 2011 Oct 11;16(10):8504-14
pubmed: 21989311
Clin Microbiol Rev. 2017 Apr;30(2):557-596
pubmed: 28275006
FEBS Lett. 1996 Apr 1;383(3):251-4
pubmed: 8925907
Med Res Rev. 2019 May;39(3):831-859
pubmed: 30353555
Biomacromolecules. 2017 Nov 13;18(11):3846-3868
pubmed: 28933147
Biochim Biophys Acta. 1975 Dec 16;413(3):371-93
pubmed: 1103979
J Appl Microbiol. 2017 Jun;122(6):1547-1557
pubmed: 28370752
P T. 2015 Apr;40(4):277-83
pubmed: 25859123
J Appl Microbiol. 2000 Feb;88(2):213-9
pubmed: 10735988
Prev Nutr Food Sci. 2018 Mar;23(1):60-69
pubmed: 29662849
Int J Antimicrob Agents. 2015 Jun;45(6):568-85
pubmed: 25857949
Cell. 2007 Mar 23;128(6):1037-50
pubmed: 17382878
ACS Appl Mater Interfaces. 2016 May 4;8(17):10700-9
pubmed: 27057922
Food Chem. 2017 Jul 15;227:149-157
pubmed: 28274415
J Agric Food Chem. 2008 Jul 9;56(13):4874-900
pubmed: 18543935
Nat Commun. 2018 Dec 7;9(1):5231
pubmed: 30531920
J Food Sci. 2014 Jun;79(6):R1077-90
pubmed: 24837015
Carbohydr Polym. 2017 Dec 15;178:347-351
pubmed: 29050604