Study of whole genome linkage disequilibrium patterns of Iranian water buffalo breeds using the Axiom Buffalo Genotyping 90K Array.
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2019
2019
Historique:
received:
07
09
2018
accepted:
16
05
2019
entrez:
1
6
2019
pubmed:
1
6
2019
medline:
31
1
2020
Statut:
epublish
Résumé
Accuracy of genome-wide association studies, and the successful implementation of genomic selection depends on the level of linkage disequilibrium (LD) across the genome and also the persistence of LD phase between populations. In the present study LD between adjacent SNPs and LD decay between SNPs was calculated in three Iranian water buffalo populations. Persistence of LD phase was evaluated across these populations and effective population size (Ne) was estimated from corrected r2 information. A set of 404 individuals from three Iranian buffalo populations were genotyped with the Axiom Buffalo Genotyping 90K Array. Average r2 and |D'| between adjacent SNP pairs across all chromosomes was 0.27 and 0.66 for AZI, 0.29 and 0.68 for KHU, and 0.32 and 0.72 for MAZ. The LD between the SNPs decreased with increasing physical distance from 100Kb to 1Mb between markers, from 0.234 to 0.018 for AZI, 0.254 to 0.034 for KHU, and 0.297 to 0.119 for MAZ, respectively. These results indicate that a density of 90K SNP is sufficient for genomic analyses relying on long range LD (e.g. GWAS and genomic selection). The persistence of LD phase decreased with increasing marker distances across all the populations, but remained above 0.8 for AZI and KHU for marker distances up to 100Kb. For multi-breed genomic evaluation, the 90K SNP panel is suitable for AZI and KHU buffalo breeds. Estimated effective population sizes for AZI, KHU and MAZ were 477, 212 and 32, respectively, for recent generations. The estimated effective population sizes indicate that the MAZ is at risk and requires careful management.
Identifiants
pubmed: 31150486
doi: 10.1371/journal.pone.0217687
pii: PONE-D-18-26297
pmc: PMC6544294
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0217687Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Genetics. 2010 Jul;185(3):1021-31
pubmed: 20407128
BMC Genomics. 2008 Dec 24;9:631
pubmed: 19108729
Genetics. 2006 Apr;172(4):2647-63
pubmed: 16452153
Genome Res. 2003 Apr;13(4):635-43
pubmed: 12654718
Trends Genet. 2006 Aug;22(8):437-46
pubmed: 16808986
Am J Hum Genet. 2001 Jul;69(1):1-14
pubmed: 11410837
PLoS One. 2009;4(4):e5350
pubmed: 19390634
J Dairy Sci. 2008 May;91(5):2106-17
pubmed: 18420642
Nat Rev Genet. 2003 Aug;4(8):587-97
pubmed: 12897771
Anim Genet. 2010 Aug;41(4):346-56
pubmed: 20055813
BMC Genet. 2008 Jul 08;9:45
pubmed: 18611270
Am J Hum Genet. 2007 Sep;81(3):559-75
pubmed: 17701901
BMC Genomics. 2010 Jul 08;11:421
pubmed: 20609259
Anim Genet. 2010 Aug;41(4):433-5
pubmed: 20219068
BMC Genet. 2007 Oct 25;8:74
pubmed: 17961247
PLoS One. 2017 Oct 5;12(10):e0185220
pubmed: 28981529
Heredity (Edinb). 1994 Dec;73 ( Pt 6):657-79
pubmed: 7814264
BMC Genet. 2016 Feb 01;17:32
pubmed: 26832943
Science. 2009 Apr 24;324(5926):528-32
pubmed: 19390050
Theor Popul Biol. 1971 Jun;2(2):125-41
pubmed: 5170716
BMC Genet. 2009 Apr 24;10:19
pubmed: 19393054
Genetics. 1964 Jan;49(1):49-67
pubmed: 17248194
Front Genet. 2018 Mar 02;9:53
pubmed: 29552025
BMC Proc. 2009 Feb 23;3 Suppl 1:S10
pubmed: 19278536
Bioinformatics. 2014 Nov 1;30(21):3118-9
pubmed: 25028724
Genet Mol Res. 2014 Jun 09;13(2):4202-15
pubmed: 25036164
Nucleic Acids Res. 1989 Oct 25;17(20):8390
pubmed: 2813076
BMC Genomics. 2008 Apr 24;9:187
pubmed: 18435834
Nat Rev Genet. 2002 Apr;3(4):299-309
pubmed: 11967554
BMC Genomics. 2013 May 05;14:305
pubmed: 23642139
BMC Genomics. 2012 Jan 17;13:24
pubmed: 22252454
Philos Trans R Soc Lond B Biol Sci. 2005 Jul 29;360(1459):1395-409
pubmed: 16048783
Genetics. 2002 Mar;160(3):1179-89
pubmed: 11901132
Genet Mol Res. 2010 Dec 21;9(4):2429-35
pubmed: 21174262
BioData Min. 2009 Dec 03;2(1):7
pubmed: 19954552
J Anim Breed Genet. 2010 Oct;127(5):339-47
pubmed: 20831557
Nat Rev Genet. 2008 Jun;9(6):477-85
pubmed: 18427557
Genetics. 2008 Jul;179(3):1503-12
pubmed: 18622038
BMC Genomics. 2014;15 Suppl 7:S6
pubmed: 25573652
Theor Appl Genet. 1968 Jun;38(6):226-31
pubmed: 24442307
Genetics. 2001 Apr;157(4):1819-29
pubmed: 11290733
BMC Genomics. 2018 Jun 11;19(1):449
pubmed: 29890939
BMC Genet. 2015 Jun 25;16:67
pubmed: 26108536
J Dairy Sci. 2000 Apr;83(4):795-806
pubmed: 10791796
Nature. 2001 May 10;411(6834):199-204
pubmed: 11346797
BMC Genet. 2009 Oct 21;10:68
pubmed: 19843347
Mol Phylogenet Evol. 2004 Feb;30(2):308-24
pubmed: 14715223
BMC Biol. 2010 Apr 29;8:50
pubmed: 20525112
Ann Hum Genet. 2002 May;66(Pt 3):223-33
pubmed: 12174213
Genome Res. 2007 Apr;17(4):520-6
pubmed: 17351134