DNA methylome profiling in identical twin pairs discordant for body mass index.
Journal
International journal of obesity (2005)
ISSN: 1476-5497
Titre abrégé: Int J Obes (Lond)
Pays: England
ID NLM: 101256108
Informations de publication
Date de publication:
12 2019
12 2019
Historique:
received:
11
09
2018
accepted:
05
04
2019
revised:
01
04
2019
pubmed:
4
6
2019
medline:
14
7
2020
entrez:
2
6
2019
Statut:
ppublish
Résumé
Body mass index (BMI) serves as an important measurement of obesity and adiposity, which are highly correlated with cardiometabolic diseases. Although high heritability has been estimated, the identified genetic variants by genetic association studies only explain a small proportion of BMI variation. As an active effort for further exploring the molecular basis of BMI variation, large-scale epigenome-wide association studies have been conducted but with limited number of loci reported, perhaps due to poorly controlled confounding factors, including genetic factors. Being genetically identical, monozygotic twins discordant for BMI are ideal subjects for analyzing the epigenetic association between DNA methylation and BMI, providing perfect control on their genetic makeups largely responsible for BMI variation. We performed an epigenome-wide association study on BMI using 30 identical twin pairs (15 male and 15 female pairs) with age ranging from 39 to 72 years and degree of BMI discordance ranging from 3-7.5 kg/m After adjusting for blood cell composition and clinical variables, we identified 136 CpGs with p-value < 1e-4, 30 CpGs with p < 1e-05 but no CpGs reached genome-wide significance. Genomic region-based analysis found 11 differentially methylated regions harboring coding and non-coding genes some of which were validated by gene expression analysis on independent samples. Our DNA methylation sequencing analysis on identical twins provides new references for the epigenetic regulation on BMI and obesity.
Identifiants
pubmed: 31152155
doi: 10.1038/s41366-019-0382-4
pii: 10.1038/s41366-019-0382-4
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2491-2499Références
Di Cesare M, Bentham J, Stevens GA, Zhou B, Danaei G, Lu Y, et al. Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet. 2016;387:1377–96.
doi: 10.1016/S0140-6736(16)30054-X
Gaziano TA, Opie LH. Body-mass index and mortality. Lancet. 2009;374:113–4.
pubmed: 19595336
doi: 10.1016/S0140-6736(09)61279-4
Berrington de Gonzalez A, Hartge P, Cerhan JR, Flint AJ, Hannan L, MacInnis RJ, et al. Body-mass index and mortality among 1.46 million white adults. N Engl J Med. 2010;363:2211–9.
doi: 10.1056/NEJMoa1000367
pubmed: 21121834
Centers of disease control. Body mass index: considerations for practitioners. CDC; 2011. https://www.cdc.gov/obesity/downloads/BMIforPactitioners.pdf .
Eriksen D, Rosthøj S, Burr H, Holtermann A. Sedentary work-Associations between five-year changes in occupational sitting time and body mass index. Prev Med (Baltim). 2015;73:1–5.
doi: 10.1016/j.ypmed.2014.12.038
García Villar J, Quintana-Domeque C. Income and body mass index in Europe. Econ Hum Biol. 2009;7:73–83.
pubmed: 19246259
doi: 10.1016/j.ehb.2009.01.006
Elks CE, Hoed M den, Zhao JH, Sharp SJ, Wareham NJ, Loos RJF, et al. Variability in the heritability of body mass index: a systematic review and meta-regression. Front Endocrinol (Lausanne). 2012. https://doi.org/10.3389/fendo.2012.00029 .
Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 2017. https://doi.org/10.1016/j.ajhg.2017.06.005 .
pubmed: 28686856
doi: 10.1016/j.ajhg.2017.06.005
Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015. https://doi.org/10.1038/nature14177 .
pubmed: 25673413
pmcid: 4382211
doi: 10.1038/nature14177
Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 2016. https://doi.org/10.1038/nrg.2016.59 .
pubmed: 27346641
doi: 10.1038/nrg.2016.59
Dick KJ, Nelson CP, Tsaprouni L, Sandling JK, Aïssi D, Wahl S, et al. DNA methylation and body-mass index: A genome-wide analysis. Lancet. 2014;383:1990–8.
pubmed: 24630777
doi: 10.1016/S0140-6736(13)62674-4
Wilson LE, Harlid S, Xu Z, Sandler DP, Taylor JA. An epigenome-wide study of body mass index and DNA methylation in blood using participants from the Sister Study cohort. Int J Obes. 2017. https://doi.org/10.1038/ijo.2016.184 .
pubmed: 27773939
doi: 10.1038/ijo.2016.184
Wahl S, Drong A, Lehne B, Loh M, Scott WR, Kunze S, et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature. 2017. https://doi.org/10.1038/nature20784 .
pubmed: 28002404
pmcid: 5570525
doi: 10.1038/nature20784
Tan Q. Epigenetic epidemiology of complex diseases using twins. Med Epigenetics. 2013;1:46–51.
doi: 10.1159/000354285
Li W, Christiansen L, Hjelmborg J, Baumbach J, Tan Q. On the power of epigenome-wide association studies using a disease-discordant twin design. Bioinformatics. 2018;34:bty532–bty532.
Kurdyukov S, Bullock M. DNA methylation analysis: choosing the right method. Biology (Basel). 2016. https://doi.org/10.3390/biology5010003 .
pmcid: 4810160
doi: 10.3390/biology5010003
Duan H, Ning F, Zhang D, Wang S, Zhung D, Tan Q, et al. The qingdao twin registry: a status update. Twin Res Hum Genet. 2013. https://doi.org/10.1017/thg.2012.113 .
pubmed: 23182450
doi: 10.1017/thg.2012.113
Qiao Q, Pang Z, Gao W, Wang S, Dong Y, Zhang L, et al. A large-scale diabetes prevention program in real-life settings in Qingdao of CHN (2006-12). Prim. Care Diabetes. 2010. https://doi.org/10.1016/j.pcd.2010.04.003 .
pubmed: 20452302
doi: 10.1016/j.pcd.2010.04.003
Krueger F, Andrews SR. Bismark: A flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 2011;27:1571–2.
pubmed: 21493656
pmcid: 3102221
doi: 10.1093/bioinformatics/btr167
Krueger F. Trim galore. Babraham Bioinforma; 2016 (on line).
Langmead B, Salzberg SL. Langmead. Bowtie2. Nat Methods. 2013;9:357–9.
doi: 10.1038/nmeth.1923
Hebestreit K, Dugas M, Klein HU. Detection of significantly differentially methylated regions in targeted bisulfite sequencing data. Bioinformatics. 2013;29:1647–53.
pubmed: 23658421
doi: 10.1093/bioinformatics/btt263
Rahmani E, Zaitlen N, Baran Y, Eng C, Hu D, Galanter J, et al. Sparse PCA corrects for cell type heterogeneity in epigenome-wide association studies. Nat Methods. 2016. https://doi.org/10.1038/nmeth.3809 .
pubmed: 27018579
pmcid: 5548182
doi: 10.1038/nmeth.3809
Tan Q, Christiansen L, von Bornemann Hjelmborg J, Christensen K. Twin methodology in epigenetic studies. J Exp Biol. 2015;218:134–9.
pubmed: 25568460
doi: 10.1242/jeb.107151
Hochberg Y, Benjaminit Y. Controlling the false discovery rate: a practical and powerful approach to multiple controlling the false discovery rate: a practical and powerful approach to multiple testing. Source J R Stat Soc Ser B J R Stat Soc Ser B J R Stat Soc B. 1995;57:289–300.
McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, et al. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol. 2010;28:495–501.
pubmed: 20436461
pmcid: 4840234
doi: 10.1038/nbt.1630
Pedersen BS, Schwartz DA, Yang IV, Kechris KJ. Comb-p: Software for combining, analyzing, grouping and correcting spatially correlated P-values. Bioinformatics. 2012. https://doi.org/10.1093/bioinformatics/bts545 .
pubmed: 22954632
pmcid: 3496335
doi: 10.1093/bioinformatics/bts545
Durinck S, Moreau Y, Kasprzyk A, Davis S, De Moor B, Brazma A, et al. BioMart and Bioconductor: A powerful link between biological databases and microarray data analysis. Bioinformatics. 2005. https://doi.org/10.1093/bioinformatics/bti525 .
pubmed: 16082012
doi: 10.1093/bioinformatics/bti525
Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/ Bioconductor package biomaRt. Nat Protoc. 2009. https://doi.org/10.1038/nprot.2009.97 .
pubmed: 19617889
pmcid: 3159387
doi: 10.1038/nprot.2009.97
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci. 2005. https://doi.org/10.1073/pnas.0506580102 .
doi: 10.1073/pnas.0506580102
Peng Y, Chen FF, Ge J, Zhu JY, Shi XE, Li X, et al. miR-429 inhibits differentiation and promotes proliferation in porcine preadipocytes. Int J Mol Sci. 2016. https://doi.org/10.3390/ijms17122047 .
pmcid: 5187847
doi: 10.3390/ijms17122047
Magenta A, Ciarapica R, Capogrossi MC. The emerging role of MIR-200 family in cardiovascular diseases. Circ Res. 2017. https://doi.org/10.1161/CIRCRESAHA.116.310274 .
pubmed: 28450364
doi: 10.1161/CIRCRESAHA.116.310274
Crépin D, Benomar Y, Riffault L, Amine H, Gertler A, Taouis M. The over-expression of miR-200a in the hypothalamus of ob/ob mice is linked to leptin and insulin signaling impairment. Mol Cell Endocrinol. 2014. https://doi.org/10.1016/j.mce.2013.12.016 .
pubmed: 24394757
doi: 10.1016/j.mce.2013.12.016
Lin D, Chun TH, Kang L. Adipose extracellular matrix remodelling in obesity and insulin resistance. Biochem Pharmacol. 2016. https://doi.org/10.1016/j.bcp.2016.05.005 .
pubmed: 27179976
pmcid: 5061598
doi: 10.1016/j.bcp.2016.05.005
Messina G, De Luca V, Viggiano A, Ascione A, Iannaccone T, Chieffi S, et al. Autonomic nervous system in the control of energy balance and body weight: Personal contributions. Neurol Res Int. 2013. https://doi.org/10.1155/2013/639280 .
doi: 10.1155/2013/639280
Charrier B, Pilon N. Toward a better understanding of enteric gliogenesis. Neurogenesis 2017. https://doi.org/10.1080/23262133.2017.1293958 .
pubmed: 28352645
pmcid: 5358706
doi: 10.1080/23262133.2017.1293958
Li J, Tang Y, Purkayastha S, Yan J, Cai D. Control of obesity and glucose intolerance via building neural stem cells in the hypothalamus. Mol Metab. 2014. https://doi.org/10.1016/j.molmet.2014.01.012 .
pubmed: 24749061
pmcid: 3986657
doi: 10.1016/j.molmet.2014.01.012
Lorenz C, Prigione A. Mitochondrial metabolism in early neural fate and its relevance for neuronal disease modeling. Curr Opin Cell Biol. 2017. https://doi.org/10.1016/j.ceb.2017.12.004 .
pubmed: 29276950
doi: 10.1016/j.ceb.2017.12.004
Thaler JP, Guyenet SJ, Dorfman MD, Wisse BE, Schwartz MW, Wadden T, et al. Hypothalamic inflammation: marker or mechanism of obesity pathogenesis? Diabetes. 2013. https://doi.org/10.2337/db12-1605 .
pubmed: 23881189
pmcid: 3717869
doi: 10.2337/db12-1605
Bouret SG. Development of Hypothalamic Circuits That ControlFood Intake and Energy Balance. In: Harris RBS (Ed.) Appetiteand Food Intake: Central Control. 2nd Boca Raton (FL): CRCPress/Taylor & Francis; 2017. Chapter 7. Available from: https://www.ncbi.nlm.nih.gov/books/NBK453139/ https://doi.org/10.1201/9781315120171-7 .
doi: 10.1201/9781315120171-7
Godisela KK, Reddy SS, Kumar CU, Saravanan N, Reddy PY, Jablonski MM, et al. Impact of obesity with impaired glucose tolerance on retinal degeneration in a rat model of metabolic syndrome. Mol Vis. 2017;23:263–74.
pubmed: 28465658
pmcid: 5398884
Hotta K, Kitamoto T, Kitamoto A, Ogawa Y, Honda Y, Kessoku T, et al. Identification of the genomic region under epigenetic regulation during non-alcoholic fatty liver disease progression. Hepatol Res. 2018. https://doi.org/10.1111/hepr.12992 .
pubmed: 29059699
Sharp GC, Salas LA, Monnereau C, Allard C, Yousefi P, Everson TM, et al. Maternal BMI at the start of pregnancy and offspring epigenome-wide DNA methylation: findings from the pregnancy and childhood epigenetics (PACE) consortium. Hum Mol Genet. 2017. https://doi.org/10.1093/hmg/ddx290 .
pubmed: 29016858
pmcid: 5656174
doi: 10.1093/hmg/ddx290
Feitosa MF, Wojczynski MK, North KE, Zhang Q, Province MA, Carr JJ, et al. The ERLIN1-CHUK-CWF19L1 gene cluster influences liver fat deposition and hepatic inflammation in the NHLBI Family Heart Study. Atherosclerosis. 2013. https://doi.org/10.1016/j.atherosclerosis.2013.01.038 .
pubmed: 23477746
pmcid: 3640729
doi: 10.1016/j.atherosclerosis.2013.01.038
Day SE, Coletta RL, Kim JY, Garcia LA, Campbell LE, Benjamin TR, et al. Potential epigenetic biomarkers of obesity-related insulin resistance in human whole-blood. Epigenetics. 2017. https://doi.org/10.1080/15592294.2017.1281501 .
pubmed: 28106509
pmcid: 5398771
doi: 10.1080/15592294.2017.1281501
Xie J-J, Jiang Y-Y, Jiang Y, Li C-Q, Chee L-M, An O, et al. Increased expression of the long non-coding RNA LINC01503, regulated by TP63, in squamous cell carcinoma and effects on oncogenic activities of cancer cell lines. Gastroenterology. 2018. https://doi.org/10.1053/j.gastro.2018.02.018 .
pubmed: 29454790
doi: 10.1053/j.gastro.2018.02.018
Suryavanshi S, Jadhav S, McConnell B. Polymorphisms/mutations in A-kinase anchoring proteins (AKAPs): role in the cardiovascular system. J Cardiovasc Dev Dis. 2018. https://doi.org/10.3390/jcdd5010007 .
pmcid: 5872355
doi: 10.3390/jcdd5010007