Coding Capacity of Purkinje Cells With Different Schemes of Morphological Reduction.
Purkinje cell
dendritic model
multi-compartmental models
neuronal morphology
rate coding
temporal coding
Journal
Frontiers in computational neuroscience
ISSN: 1662-5188
Titre abrégé: Front Comput Neurosci
Pays: Switzerland
ID NLM: 101477956
Informations de publication
Date de publication:
2019
2019
Historique:
received:
09
01
2019
accepted:
24
04
2019
entrez:
4
6
2019
pubmed:
4
6
2019
medline:
4
6
2019
Statut:
epublish
Résumé
The brain as a neuronal system has very complex structures with a large diversity of neuronal types. The most basic complexity is seen from the structure of neuronal morphology, which usually has a complex tree-like structure with dendritic spines distributed in branches. To simulate a large-scale network with spiking neurons, the simple point neuron, such as the integrate-and-fire neuron, is often used. However, recent experimental evidence suggests that the computational ability of a single neuron is largely enhanced by its morphological structure, in particular, by various types of dendritic dynamics. As the morphology reduction of detailed biophysical models is a classic question in systems neuroscience, much effort has been taken to simulate a neuron with a few compartments to include the interaction between the soma and dendritic spines. Yet, novel reduction methods are still needed to deal with the complex dendritic tree. Here, using 10 individual Purkinje cells of the cerebellum from three species of guinea-pig, mouse and rat, we consider four types of reduction methods and study their effects on the coding capacity of Purkinje cells in terms of firing rate, timing coding, spiking pattern, and modulated firing under different stimulation protocols. We found that there is a variation of reduction performance depending on individual cells and species, however, all reduction methods can preserve, to some degree, firing activity of the full model of Purkinje cell. Therefore, when stimulating large-scale network of neurons, one has to choose a proper type of reduced neuronal model depending on the questions addressed. Among these reduction schemes, Branch method, that preserves the geometrical volume of neurons, can achieve the best balance among different performance measures of accuracy, simplification, and computational efficiency, and reproduce various phenomena shown in the full morphology model of Purkinje cells. Altogether, these results suggest that the Branch reduction scheme seems to provide a general guideline for reducing complex morphology into a few compartments without the loss of basic characteristics of the firing properties of neurons.
Identifiants
pubmed: 31156415
doi: 10.3389/fncom.2019.00029
pmc: PMC6530636
doi:
Types de publication
Journal Article
Langues
eng
Pagination
29Références
J Physiol. 1994 Jan 1;474(1):101-18
pubmed: 8014888
Exp Neurol. 1959 Nov;1:491-527
pubmed: 14435979
Cerebellum. 2012 Jun;11(2):457-87
pubmed: 22161499
Sci Rep. 2019 Feb 11;9(1):1742
pubmed: 30742002
Elife. 2016 Sep 19;5:
pubmed: 27642013
Front Cell Neurosci. 2017 Sep 13;11:278
pubmed: 28955206
Cerebellum. 2016 Apr;15(2):93-103
pubmed: 26112422
J Comp Neurol. 1988 Aug 8;274(2):168-77
pubmed: 3209740
Nat Commun. 2020 Jan 15;11(1):288
pubmed: 31941884
Brain Res. 2001 Feb 9;891(1-2):106-15
pubmed: 11164813
Annu Rev Neurosci. 2009;32:413-34
pubmed: 19555291
J Neurosci. 2012 Oct 31;32(44):15345-58
pubmed: 23115173
Science. 2006 Oct 6;314(5796):80-5
pubmed: 17023649
Annu Rev Neurosci. 2001;24:981-1004
pubmed: 11520925
J Neurosci. 2012 Jun 20;32(25):8678-85
pubmed: 22723707
Cell Rep. 2012 Aug 30;2(2):223-30
pubmed: 22884367
Rev Neurosci. 1999;10(3-4):233-45
pubmed: 10526889
J Neurosci. 2012 Feb 29;32(9):3267-80
pubmed: 22378898
Neural Comput. 2002 Feb;14(2):325-46
pubmed: 11802915
J Neurophysiol. 2006 Dec;96(6):3485-91
pubmed: 16987931
Front Cell Neurosci. 2015 Apr 13;9:122
pubmed: 25918500
J Neurosci. 2004 Oct 13;24(41):9138-45
pubmed: 15483132
Nat Neurosci. 2015 Dec;18(12):1798-803
pubmed: 26551541
Front Neurol. 2011 Sep 01;2:53
pubmed: 21909334
Nature. 2017 Apr 6;544(7648):96-100
pubmed: 28321129
J Neurophysiol. 1994 Jan;71(1):401-19
pubmed: 8158238
Neuron. 2003 Mar 27;37(6):977-87
pubmed: 12670426
Elife. 2017 May 25;6:
pubmed: 28541889
Annu Rev Neurosci. 2018 Jul 8;41:233-253
pubmed: 29986160
Nature. 1996 Jul 25;382(6589):363-6
pubmed: 8684467
Neuron. 2017 Jul 5;95(1):19-32
pubmed: 28683265
Annu Rev Neurosci. 1995;18:409-41
pubmed: 7605068
J Neurosci. 2015 Jan 21;35(3):1106-24
pubmed: 25609626
Nat Rev Neurosci. 2018 Jun;19(6):338-350
pubmed: 29643480
J Neurophysiol. 1994 Jan;71(1):375-400
pubmed: 7512629
Eur J Neurosci. 2010 Jul;32(1):41-52
pubmed: 20597972
Neural Comput. 2011 Dec;23(12):3145-61
pubmed: 21919784
Nat Rev Neurosci. 2001 Dec;2(12):880-8
pubmed: 11733795
J Neurosci. 2008 Jan 30;28(5):1140-52
pubmed: 18234892
Nat Commun. 2018 Mar 15;9(1):1099
pubmed: 29545572
Elife. 2016 Jul 26;5:
pubmed: 27458803
Annu Rev Neurosci. 2001;24:1071-89
pubmed: 11520928
Nat Rev Neurosci. 2013 Nov;14(11):770-85
pubmed: 24135696
J Neurosci. 2009 Oct 21;29(42):13172-81
pubmed: 19846705
Biol Cybern. 2006 Aug;95(2):97-112
pubmed: 16821035
Curr Opin Neurobiol. 2004 Apr;14(2):225-32
pubmed: 15082329
Sci Rep. 2013 Oct 14;3:2934
pubmed: 24121727
J Physiol. 2017 Aug 1;595(15):5341-5357
pubmed: 28516455
J Neurosci. 2015 May 6;35(18):7056-68
pubmed: 25948257
Bull Math Biol. 1990;52(1-2):25-71; discussion 5-23
pubmed: 2185861
Front Synaptic Neurosci. 2016 Nov 03;8:35
pubmed: 27857688
Nat Neurosci. 2005 Feb;8(2):202-11
pubmed: 15665875
Biol Cybern. 2006 Jul;95(1):1-19
pubmed: 16622699
Front Comput Neurosci. 2008 Dec 19;2:8
pubmed: 19129937
Brain Res. 2006 Jun 30;1097(1):59-64
pubmed: 16730670
J Neurosci. 2005 Jan 12;25(2):454-63
pubmed: 15647489
J Neuropsychiatry Clin Neurosci. 2009 Summer;21(3):245-53
pubmed: 19776302
Nat Rev Neurosci. 2012 Sep;13(9):619-35
pubmed: 22895474
Nat Rev Neurosci. 2008 Apr;9(4):304-13
pubmed: 18319727
Cerebellum. 2012 Jun;11(2):455-6
pubmed: 22528967
J Neurosci Methods. 2012 Sep 15;210(1):22-34
pubmed: 22524993
Nature. 2012 Aug 30;488(7413):647-51
pubmed: 22763451
Nat Commun. 2016 Dec 15;7:13722
pubmed: 27976716
Front Neural Circuits. 2017 Sep 20;11:67
pubmed: 28979195
Cerebellum. 2004;3(3):188-92
pubmed: 15543809
Nat Commun. 2015 Jul 16;6:7364
pubmed: 26179122
Science. 2003 Sep 19;301(5640):1736-9
pubmed: 14500987
PLoS Comput Biol. 2010 Aug 12;6(8):
pubmed: 20711353
J Comput Neurosci. 2011 Oct;31(2):385-400
pubmed: 21340454
J Comput Neurosci. 2003 May-Jun;14(3):311-27
pubmed: 12766430
PLoS One. 2007 May 30;2(5):e485
pubmed: 17534435
Jpn J Physiol. 1984;34(5):781-92
pubmed: 6099855
Neuron. 1997 Sep;19(3):665-78
pubmed: 9331356
Elife. 2016 Jan 19;5:e10509
pubmed: 26780828