Use of physiological information based on grayscale images to improve mass spectrometry imaging data analysis from biological tissues.


Journal

Analytica chimica acta
ISSN: 1873-4324
Titre abrégé: Anal Chim Acta
Pays: Netherlands
ID NLM: 0370534

Informations de publication

Date de publication:
03 Oct 2019
Historique:
received: 28 11 2018
revised: 21 03 2019
accepted: 30 04 2019
entrez: 5 6 2019
pubmed: 5 6 2019
medline: 14 9 2019
Statut: ppublish

Résumé

The characterization of cancer tissues by matrix-assisted laser desorption ionization-mass spectrometry images (MALDI-MSI) is of great interest because of the power of MALDI-MS to understand the composition of biological samples and the imaging side that allows for setting spatial boundaries among tissues of different nature based on their compositional differences. In tissue-based cancer research, information on the spatial location of necrotic/tumoral cell populations can be approximately known from grayscale images of the scanned tissue slices. This study proposes as a major novelty the introduction of this physiologically-based information to help in the performance of unmixing methods, oriented to extract the MS signatures and distribution maps of the different tissues present in biological samples. Specifically, the information gathered from grayscale images will be used as a local rank constraint in Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) for the analysis of MALDI-MSI of cancer tissues. The use of this constraint, setting absence of certain kind of tissues only in clear zones of the image, will help to improve the performance of MCR-ALS and to provide a more reliable definition of the chemical MS fingerprint and location of the tissues of interest. The general strategy to address the analysis of MALDI-MSI of cancer tissues will involve the study of the MCR-ALS results and the posterior use of MCR-ALS scores as dimensionality reduction for image segmentation based on K-means clustering. The resolution method will provide the MS signatures and their distribution maps for each tissue in the sample. Then, the resolved distribution maps for each biological component (MCR scores) will be submitted as initial information to K-means clustering for image segmentation to obtain information on the boundaries of the different tissular regions in the samples studied. MCR-ALS prior to K-means not only provides the desired dimensionality reduction, but additionally resolved non-biological signal contributions are not used and the weight given to the different biological components in the segmentation process can be modulated by suitable preprocessing methods.

Identifiants

pubmed: 31159941
pii: S0003-2670(19)30545-8
doi: 10.1016/j.aca.2019.04.074
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

69-79

Informations de copyright

Copyright © 2019 Elsevier B.V. All rights reserved.

Auteurs

S Mas (S)

Signal and Information Processing for Sensing Systems, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain; Chemometrics Group, Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, B. Av. Diagonal, 645, 08028, Barcelona, Spain. Electronic address: silviamas@ube.edu.

A Torro (A)

Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, F-34298, France.

N Bec (N)

Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, F-34298, France; Institute for Regenerative Medicine & Biotherapy (IRMB), INSERM U1183, CHRU of Montpellier, 80 Rue Augustin Fiche, Montpellier, F-34295, France.

L Fernández (L)

Signal and Information Processing for Sensing Systems, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain; Department of Electronics and Biomedical Engineering, Universitat de Barcelona, Marti i Franqués 1, Barcelona, 08028, Spain.

G Erschov (G)

Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, F-34298, France.

C Gongora (C)

Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, F-34298, France.

C Larroque (C)

Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, F-34298, France; Supportive Care Unit, Institut du Cancer de Montpellier (ICM), 208 Rue des Apothicaires, Montpellier, F-34298, France.

P Martineau (P)

Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, F-34298, France.

A de Juan (A)

Chemometrics Group, Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, B. Av. Diagonal, 645, 08028, Barcelona, Spain.

S Marco (S)

Signal and Information Processing for Sensing Systems, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain; Department of Electronics and Biomedical Engineering, Universitat de Barcelona, Marti i Franqués 1, Barcelona, 08028, Spain.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH