The potential of respiration inhibition as a new approach to combat human fungal pathogens.
Antifungal Agents
/ pharmacology
Candida albicans
/ drug effects
Drug Therapy, Combination
Electron Transport Complex I
/ drug effects
Electron Transport Complex II
/ drug effects
Electron Transport Complex III
/ drug effects
Electron Transport Complex IV
/ drug effects
Fungi
/ drug effects
Humans
Mitochondria
/ drug effects
Mycoses
/ drug therapy
Oxidoreductases
/ drug effects
Virulence
/ drug effects
Candida
Metabolism
Mitochondria
Respiration
Respirometry
Yeast
Journal
Current genetics
ISSN: 1432-0983
Titre abrégé: Curr Genet
Pays: United States
ID NLM: 8004904
Informations de publication
Date de publication:
Dec 2019
Dec 2019
Historique:
received:
15
05
2019
accepted:
27
05
2019
revised:
24
05
2019
pubmed:
7
6
2019
medline:
14
4
2020
entrez:
8
6
2019
Statut:
ppublish
Résumé
The respiratory chain has been proposed as an attractive target for the development of new therapies to tackle human fungal pathogens. This arises from the presence of fungal-specific electron transport chain components and links between respiration and the control of virulence traits in several pathogenic species. However, as the physiological roles of mitochondria remain largely undetermined with respect to pathogenesis, its value as a potential new drug target remains to be determined. The use of respiration inhibitors as fungicides is well developed but has been hampered by the emergence of rapid resistance to current inhibitors. In addition, recent data suggest that adaptation of the human fungal pathogen, Candida albicans, to respiration inhibitors can enhance virulence traits such as yeast-to-hypha transition and cell wall organisation. We conclude that although respiration holds promise as a target for the development of new therapies to treat human fungal infections, we require a more detailed understanding of the role that mitochondria play in stress adaption and virulence.
Identifiants
pubmed: 31172256
doi: 10.1007/s00294-019-01001-w
pii: 10.1007/s00294-019-01001-w
pmc: PMC6820612
doi:
Substances chimiques
Antifungal Agents
0
Oxidoreductases
EC 1.-
duroquinol oxidase
EC 1.-
Electron Transport Complex II
EC 1.3.5.1
Electron Transport Complex IV
EC 1.9.3.1
Electron Transport Complex I
EC 7.1.1.2
Electron Transport Complex III
EC 7.1.1.8
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1347-1353Subventions
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Wellcome
ID : 097377/Z/11/Z
Références
Curr Genet. 2018 Dec;64(6):1239-1243
pubmed: 29796903
J Antimicrob Chemother. 2009 Oct;64(4):764-73
pubmed: 19656781
Free Radic Biol Med. 2002 Dec 1;33(11):1440-50
pubmed: 12446201
Mol Microbiol. 2011 Feb;79(4):968-89
pubmed: 21299651
Cell Microbiol. 2015 Sep;17(9):1350-64
pubmed: 25801605
J Agric Food Chem. 2019 Feb 13;67(6):1647-1655
pubmed: 30669828
FEBS Lett. 2001 Nov 16;508(2):231-5
pubmed: 11718721
Curr Genet. 2019 Aug;65(4):837-845
pubmed: 30783741
Nanomedicine. 2017 Oct;13(7):2267-2270
pubmed: 28712918
Plant Dis. 2019 Apr;103(4):729-736
pubmed: 30777800
Clin Microbiol Rev. 2007 Jan;20(1):133-63
pubmed: 17223626
Biochem J. 2001 Jun 1;356(Pt 2):595-604
pubmed: 11368790
Int Microbiol. 2008 Mar;11(1):1-9
pubmed: 18683626
Mitochondrion. 2018 Jan;38:48-57
pubmed: 28801230
Eukaryot Cell. 2011 May;10(5):672-82
pubmed: 21398508
Int J Infect Dis. 2017 Oct;63:95-98
pubmed: 28888662
J Mycol Med. 2018 Mar;28(1):51-58
pubmed: 29366545
Phytopathology. 2013 Sep;103(9):880-7
pubmed: 23593940
PLoS One. 2017 Apr 14;12(4):e0174443
pubmed: 28410367
J Pharm Pharmacol. 2003 Feb;55(2):179-84
pubmed: 12631409
FEMS Yeast Res. 2015 Jun;15(4):fov027
pubmed: 26002841
FEMS Yeast Res. 2008 Mar;8(2):183-92
pubmed: 18093133
Antimicrob Agents Chemother. 1998 Oct;42(10):2584-9
pubmed: 9756759
J Bacteriol. 1999 Jul;181(13):4098-102
pubmed: 10383980
Antimicrob Agents Chemother. 1999 Mar;43(3):651-4
pubmed: 10049282
Front Microbiol. 2012 Jun 08;3:193
pubmed: 22701111
Clin Infect Dis. 2001 Jul 15;33(2):177-86
pubmed: 11418877
Virulence. 2017 Feb 17;8(2):159-168
pubmed: 27191707
Biochem Biophys Res Commun. 2006 Sep 15;348(1):206-11
pubmed: 16876761
Antimicrob Agents Chemother. 2016 Mar 25;60(4):2185-94
pubmed: 26810653
Pest Manag Sci. 2019 May;75(5):1295-1303
pubmed: 30350447
Eukaryot Cell. 2011 Feb;10(2):237-48
pubmed: 21183691
Cell Rep. 2018 Nov 20;25(8):2244-2258.e7
pubmed: 30463019
Arch Microbiol. 2003 Apr;179(4):295-300
pubmed: 12640519
Biochim Biophys Acta. 2013 Nov-Dec;1827(11-12):1346-61
pubmed: 23220121
Zentralbl Bakteriol. 1990 Aug;273(3):332-43
pubmed: 2206203
J Bioenerg Biomembr. 2008 Dec;40(6):631-6
pubmed: 19148712
J Infect Dis. 2017 Aug 15;216(suppl_3):S474-S483
pubmed: 28911042
Biochim Biophys Acta. 2002 Oct 3;1556(1):73-80
pubmed: 12351220
J Bioenerg Biomembr. 2006 Apr;38(2):129-35
pubmed: 17053999
Antimicrob Agents Chemother. 2006 Feb;50(2):744-7
pubmed: 16436735
PLoS One. 2017 Aug 30;12(8):e0184003
pubmed: 28854218
J Antimicrob Chemother. 2005 Aug;56(2):307-14
pubmed: 15958498
J Med Microbiol. 2014 Jul;63(Pt 7):988-96
pubmed: 24790082
MBio. 2019 Jan 29;10(1):
pubmed: 30696734
Parasitology. 2018 Feb;145(2):175-183
pubmed: 27894362
Mol Microbiol. 2012 Apr;84(2):383-99
pubmed: 22443190
Cell Chem Biol. 2016 Aug 18;23(8):978-991
pubmed: 27524297
Acta Trop. 2006 Dec;100(3):172-84
pubmed: 17126803
PLoS Genet. 2019 Feb 11;15(2):e1007976
pubmed: 30742618
Infect Immun. 2003 Oct;71(10):5794-802
pubmed: 14500501
Yakugaku Zasshi. 2010 Feb;130(2):247-51
pubmed: 20118649
PLoS Pathog. 2015 Aug 28;11(8):e1005133
pubmed: 26317337
Eur J Biochem. 1995 Jan 15;227(1-2):296-302
pubmed: 7851399