Internal radiation dosimetry of a
152Tb
Biodistribution
Murine phantoms
OLINDA/EXM® 2.0
Organ harvesting
Radiolabeled monoclonal antibodies
Small animal dosimetry
Spherical model
TEM-1
microPET
Journal
EJNMMI research
ISSN: 2191-219X
Titre abrégé: EJNMMI Res
Pays: Germany
ID NLM: 101560946
Informations de publication
Date de publication:
11 Jun 2019
11 Jun 2019
Historique:
received:
08
03
2019
accepted:
28
05
2019
entrez:
13
6
2019
pubmed:
13
6
2019
medline:
13
6
2019
Statut:
epublish
Résumé
Biodistribution studies based on organ harvesting represent the gold standard pre-clinical technique for dose extrapolations. However, sequential imaging is becoming increasingly popular as it allows the extraction of longitudinal data from single animals, and a direct correlation with deterministic radiation effects. We assessed the feasibility of mouse-specific, microPET-based dosimetry of an antibody fragment labeled with the positron emitter RD% between microPET-based dosimetry and biodistribution-based dose extrapolations were + 12, - 14, and + 17 for the liver, the kidneys, and the tumors, respectively. Compared to biodistribution, the imaging method significantly overestimates the absorbed doses to the heart and the lungs (+ 89 and + 117% dose difference, respectively). MicroPET-based dosimetry of
Sections du résumé
BACKGROUND
BACKGROUND
Biodistribution studies based on organ harvesting represent the gold standard pre-clinical technique for dose extrapolations. However, sequential imaging is becoming increasingly popular as it allows the extraction of longitudinal data from single animals, and a direct correlation with deterministic radiation effects. We assessed the feasibility of mouse-specific, microPET-based dosimetry of an antibody fragment labeled with the positron emitter
RESULTS
RESULTS
RD% between microPET-based dosimetry and biodistribution-based dose extrapolations were + 12, - 14, and + 17 for the liver, the kidneys, and the tumors, respectively. Compared to biodistribution, the imaging method significantly overestimates the absorbed doses to the heart and the lungs (+ 89 and + 117% dose difference, respectively).
CONCLUSIONS
CONCLUSIONS
MicroPET-based dosimetry of
Identifiants
pubmed: 31187358
doi: 10.1186/s13550-019-0524-7
pii: 10.1186/s13550-019-0524-7
pmc: PMC6560118
doi:
Types de publication
Journal Article
Langues
eng
Pagination
53Subventions
Organisme : Horizon 2020
ID : 642889 MEDICIS-PROMED
Organisme : Horizon 2020
ID : 654002 ENSAR2
Références
Appl Radiat Isot. 2001 Jan;54(1):53-8
pubmed: 11144253
Health Phys. 2003 Sep;85(3):294-310
pubmed: 12938720
Mol Imaging Biol. 2004 May-Jun;6(3):149-59
pubmed: 15193249
Med Phys. 2004 Sep;31(9):2680-6
pubmed: 15487751
Eur J Nucl Med Mol Imaging. 2006 Oct;33(10):1214-7
pubmed: 16832630
Mol Imaging Biol. 2008 Nov-Dec;10(6):341-8
pubmed: 18679756
Phys Med Biol. 2009 Jul 7;54(13):4171-80
pubmed: 19521004
Phys Med Biol. 2009 Oct 21;54(20):N479-87
pubmed: 19779222
Ann ICRP. 2009;39(2):1-164
pubmed: 19897132
J Nucl Med. 2010 Mar;51(3):471-6
pubmed: 20197451
Phys Med Biol. 2011 Jan 21;56(2):357-65
pubmed: 21160113
Int J Mol Imaging. 2011;2011:197381
pubmed: 21603236
Nucl Med Biol. 2011 Aug;38(6):917-24
pubmed: 21843788
J Nucl Med. 2012 Dec;53(12):1951-9
pubmed: 23139086
Med Phys. 2013 May;40(5):051906
pubmed: 23635276
Mol Imaging Biol. 2014 Jun;16(3):383-94
pubmed: 24249641
Oncotarget. 2014 Aug 30;5(16):6994-7012
pubmed: 25051365
Rev Med Suisse. 2015 Jun 17;11(479):1340-4
pubmed: 26255495
EJNMMI Res. 2016 Dec;6(1):35
pubmed: 27108447
EJNMMI Res. 2016 Dec;6(1):85
pubmed: 27885618
Dalton Trans. 2017 Oct 31;46(42):14638-14646
pubmed: 28825750
J Nucl Med. 2018 Jan;59(1):154-160
pubmed: 28887400
Eur J Cancer. 2018 Feb;90:111-121
pubmed: 29304474
Cancer Immunol Immunother. 2018 Feb;67(2):329-339
pubmed: 29313073
J Nucl Med. 2019 Feb 7;:null
pubmed: 30733320