Fracture prediction, imaging and screening in osteoporosis.
Journal
Nature reviews. Endocrinology
ISSN: 1759-5037
Titre abrégé: Nat Rev Endocrinol
Pays: England
ID NLM: 101500078
Informations de publication
Date de publication:
09 2019
09 2019
Historique:
pubmed:
14
6
2019
medline:
27
2
2020
entrez:
14
6
2019
Statut:
ppublish
Résumé
Osteoporosis is associated with increased fragility of bone and a subsequent increased risk of fracture. The diagnosis of osteoporosis is intimately linked with the imaging and quantification of bone and BMD. Scanning modalities, such as dual-energy X-ray absorptiometry or quantitative CT, have been developed and honed over the past half century to provide measures of BMD and bone microarchitecture for the purposes of clinical practice and research. Combined with fracture prediction tools such as Fracture Risk Assessment Tool (FRAX) (which use a combination of clinical risk factors for fracture to provide a measure of risk), these elements have led to a paradigm shift in the ability to diagnose osteoporosis and predict individuals who are at risk of fragility fracture. Despite these developments, a treatment gap exists between individuals who are at risk of osteoporotic fracture and those who are receiving therapy. In this Review, we summarize the epidemiology of osteoporosis, the history of scanning modalities, fracture prediction tools and future directions, including the most recent developments in prediction of fractures.
Identifiants
pubmed: 31189982
doi: 10.1038/s41574-019-0220-8
pii: 10.1038/s41574-019-0220-8
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
535-547Subventions
Organisme : Medical Research Council
ID : MC_U147585819
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 201222/Z/16/Z
Pays : United Kingdom
Organisme : Arthritis Research UK
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_U147585827
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_U147585824
Pays : United Kingdom
Organisme : Versus Arthritis
ID : 19583
Pays : United Kingdom
Organisme : Department of Health
ID : 10/33/04
Pays : United Kingdom
Organisme : Versus Arthritis
ID : 17702
Pays : United Kingdom
Organisme : Versus Arthritis
ID : 21231
Pays : United Kingdom
Références
Hernlund, E. et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch. Osteoporos. 8, 136 (2013).
pubmed: 24113837
pmcid: 3880487
Gullberg, B., Johnell, O. & Kanis, J. A. World-wide projections for hip fracture. Osteoporos. Int. 7, 407–413 (1997).
pubmed: 9425497
Cooper, C., Campion, G. & Melton, L. J. 3rd Hip fractures in the elderly: a world-wide projection. Osteoporos. Int. 2, 285–289 (1992).
pubmed: 1421796
Chrischilles, E. A., Butler, C. D., Davis, C. S. & Wallace, R. B. A model of lifetime osteoporosis impact. Arch. Intern. Med. 151, 2026–2032 (1991).
pubmed: 1929691
Royal College of Physicians. Osteoporosis: Clinical Guidelines for the Prevention and Treatment (Royal College of Physicians, London, 1999).
Eddy, D. M. et al. Osteoporosis: review of the evidence for prevention, diagnosis, and treatment and cost-effectiveness analysis. Osteoporos. Int. 8, I–S82 (1998).
Carmona, R. H. in Bone Health and Osteoporosis: A Report of the Surgeon General (University Press of the Pacific, 2004).
Sambrook, P. & Cooper, C. Osteoporosis. Lancet 367, 2010–2018 (2006).
pubmed: 16782492
van der Velde, R. Y. et al. Secular trends in fracture incidence in the UK between 1990 and 2012. Osteoporos. Int. 27, 3197–3206 (2016).
pubmed: 27283403
pmcid: 5035540
Cooper, C. et al. Secular trends in the incidence of hip and other osteoporotic fractures. Osteoporos. Int. 22, 1277–1288 (2011).
pubmed: 21461721
pmcid: 3546313
Kanis, J. A. et al. A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos. Int. 23, 2239–2256 (2012).
pubmed: 22419370
pmcid: 3421108
Curtis, E. M. et al. Epidemiology of fractures in the United Kingdom 1988-2012: variation with age, sex, geography, ethnicity and socioeconomic status. Bone 87, 19–26 (2016).
pubmed: 26968752
pmcid: 26968752
Cummings, S. R. & Melton, L. J. Epidemiology and outcomes of osteoporotic fractures. Lancet 359, 1761–1767 (2002).
pubmed: 12049882
Bliuc, D., Alarkawi, D., Nguyen, T. V., Eisman, J. A. & Center, J. R. Risk of subsequent fractures and mortality in elderly women and men with fragility fractures with and without osteoporotic bone density: the Dubbo Osteoporosis Epidemiology Study. J. Bone Miner. Res. 30, 637–646 (2015).
pubmed: 25359586
Burge, R. et al. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J. Bone Miner. Res. 22, 465–475 (2007).
pubmed: 17144789
Johnell, O. & Kanis, J. A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos. Int. 17, 1726–1733 (2006).
pubmed: 16983459
Kanis, J. A. et al. SCOPE: a scorecard for osteoporosis in Europe. Arch. Osteoporos. 8, 144 (2013).
pubmed: 24030479
pmcid: 3880480
Chapuy, M. C. et al. Vitamin D3 and calcium to prevent hip fractures in elderly women. N. Engl. J. Med. 327, 1637–1642 (1992).
pubmed: 1331788
Dawson-Hughes, B., Harris, S. S., Krall, E. A. & Dallal, G. E. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N. Engl. J. Med. 337, 670–676 (1997).
pubmed: 9278463
McClung, M. R. et al. Effect of risedronate on the risk of hip fracture in elderly women. Hip Intervention Program Study Group. N. Engl. J. Med. 344, 333–340 (2001).
pubmed: 11172164
Roux, C. et al. Vertebral fracture risk reduction with strontium ranelate in women with postmenopausal osteoporosis is independent of baseline risk factors. J. Bone Miner. Res. 21, 536–542 (2006).
pubmed: 16598373
Rossouw, J. E. et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women’s Health Initiative randomized controlled trial. JAMA 288, 321–333 (2002).
pubmed: 12117397
Hodsman, A. B., Hanley, D. A. & Josse, R. Do bisphosphonates reduce the risk of osteoporotic fractures? An evaluation of the evidence to date. CMAJ 166, 1426–1430 (2002).
pubmed: 12054412
pmcid: 111217
Bone, H. G. et al. 10 years of denosumab treatment in postmenopausal women with osteoporosis: results from the phase 3 randomised FREEDOM trial and open-label extension. Lancet Diabetes Endocrinol. 5, 513–523 (2017). This study reports that denosumab is safe and effective for use after 10 years follow-up.
pubmed: 28546097
Leder, B. Z. et al. Denosumab and teriparatide transitions in postmenopausal osteoporosis (the DATA-Switch study): extension of a randomised controlled trial. Lancet 386, 1147–1155 (2015).
pubmed: 26144908
pmcid: 4620731
Kendler, D. L. et al. Effects of teriparatide and risedronate on new fractures in post-menopausal women with severe osteoporosis (VERO): a multicentre, double-blind, double-dummy, randomised controlled trial. Lancet 391, 230–240 (2018).
pubmed: 29129436
Eastell, R. et al. Bone turnover markers to explain changes in lumbar spine BMD with abaloparatide and teriparatide: results from ACTIVE. Osteoporos. Int. 30, 667–673 (2019).
pubmed: 30635696
pmcid: 6422956
Miller, P. D. et al. Effect of abaloparatide versus placebo on new vertebral fractures in postmenopausal women with osteoporosis: a randomized clinical trial. JAMA 316, 722–733 (2016).
pubmed: 27533157
Elliot-Gibson, V., Bogoch, E. R., Jamal, S. A. & Beaton, D. E. Practice patterns in the diagnosis and treatment of osteoporosis after a fragility fracture: a systematic review. Osteoporos. Int. 15, 767–778 (2004).
pubmed: 15258724
Harvey, N. C. et al. Mind the (treatment) gap: a global perspective on current and future strategies for prevention of fragility fractures. Osteoporos. Int. 28, 1507–1529 (2017).
pubmed: 28175979
pmcid: 5392413
Kanis, J. A., Svedbom, A., Harvey, N. & McCloskey, E. V. The osteoporosis treatment gap. J. Bone Miner. Res. 29, 1926–1928 (2014).
pubmed: 24956507
Giangregorio, L., Papaioannou, A., Cranney, A., Zytaruk, N. & Adachi, J. D. Fragility fractures and the osteoporosis care gap: an international phenomenon. Semin. Arthritis Rheum. 35, 293–305 (2006).
pubmed: 16616152
Curtis, E. M., Moon, R. J., Harvey, N. C. & Cooper, C. The impact of fragility fracture and approaches to osteoporosis risk assessment worldwide. Bone 104, 29–38 (2017).
pubmed: 28119181
pmcid: 5420448
Kanis, J. A. et al. Worldwide uptake of FRAX. Arch. Osteoporos. 9, 166 (2014). This study reports the use of the FRAX prediction tool across the globe.
pubmed: 24420978
Solomon, D. H. et al. Osteoporosis medication use after hip fracture in U.S. patients between 2002 and 2011. J. Bone Miner. Res. 29, 1929–1937 (2014).
pubmed: 24535775
pmcid: 4258070
van der Velde, R. Y. et al. Trends in oral anti-osteoporosis drug prescription in the United Kingdom between 1990 and 2012: variation by age, sex, geographic location and ethnicity. Bone 94, 50–55 (2017).
pubmed: 27742502
Adler, R. A. et al. Managing osteoporosis in patients on long-term bisphosphonate treatment: report of a Task Force of the American Society for Bone and Mineral Research. J. Bone Miner. Res. 31, 16–35 (2016).
pubmed: 26350171
pmcid: 4906542
Abrahamsen, B., Eiken, P., Prieto-Alhambra, D. & Eastell, R. Risk of hip, subtrochanteric, and femoral shaft fractures among mid and long term users of alendronate: nationwide cohort and nested case-control study. BMJ 353, i3365 (2016).
pubmed: 27353596
pmcid: 4924596
LeBlanc, E. S. et al. Evaluating atypical features of femur fractures: how change in radiological criteria influenced incidence and demography of atypical femur fractures in a community setting. J. Bone Miner. Res. 32, 2304–2314 (2017).
pubmed: 28731209
Kanis, J. A. & Gluer, C. C. An update on the diagnosis and assessment of osteoporosis with densitometry. Committee of Scientific Advisors, International Osteoporosis Foundation. Osteoporos. Int. 11, 192–202 (2000).
pubmed: 10824234
Kanis, J. A. et al. Standardising the descriptive epidemiology of osteoporosis: recommendations from the Epidemiology and Quality of Life Working Group of IOF. Osteoporos. Int. 24, 2763–2764 (2013).
pubmed: 23884436
pmcid: 5096926
World Health Organization. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ. Tech. Rep. Ser. 843, 1–129 (1994).
Smith, J. & Shoukri, K. Diagnosis of osteoporosis. Clin. Cornerstone 2, 22–33 (2000).
pubmed: 10938989
Schuit, S. C. et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34, 195–202 (2004).
pubmed: 14751578
Wainwright, S. A. et al. Hip fracture in women without osteoporosis. J. Clin. Endocrinol. Metab. 90, 2787–2793 (2005).
pubmed: 15728213
Kanis, J. A. Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359, 1929–1936 (2002).
pubmed: 12057569
Kanis, J. A., Cooper, C., Rizzoli, R. & Reginster, J. Y. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos. Int. 30, 3–44 (2019). This is the most up-to-date guideline for the management of osteoporosis in postmenopausal women.
pubmed: 30324412
Mazess, R. B., Peppler, W. W., Harrison, J. E. & McNeill, K. G. Total body bone mineral and lean body mass by dual-photon absorptiometry. III. Comparison with trunk calcium by neutron activation analysis. Calcif. Tissue Int. 33, 365–368 (1981).
pubmed: 6794874
Crabtree, N. J. et al. Dual-energy X-ray absorptiometry interpretation and reporting in children and adolescents: the revised 2013 ISCD Pediatric Official Positions. J. Clin. Densitom. 17, 225–242 (2014).
pubmed: 24690232
Lotz, J. C., Cheal, E. J. & Hayes, W. C. Fracture prediction for the proximal femur using finite element models: part I — linear analysis. J. Biomech. Eng. 113, 353–360 (1991).
pubmed: 1762430
Nielson, C. M. et al. BMI and fracture risk in older men: the osteoporotic fractures in men study (MrOS). J. Bone Miner. Res. 26, 496–502 (2011).
pubmed: 20814955
Shepherd, J. A., Schousboe, J. T., Broy, S. B., Engelke, K. & Leslie, W. D. Executive summary of the 2015 ISCD Position Development Conference on advanced measures from DXA and QCT: fracture prediction beyond BMD. J. Clin. Densitom. 18, 274–286 (2015).
pubmed: 26277847
Beaudart, C. et al. Sarcopenia in daily practice: assessment and management. BMC Geriatr. 16, 170 (2016).
pubmed: 27716195
pmcid: 5052976
International Atomic Energy Agency. Dual Energy X Ray Absorptiometry for Bone Mineral Density and Body Composition Assessment (International Atomic Energy Agency, Vienna, 2011).
Rauch, F. & Schoenau, E. Changes in bone density during childhood and adolescence: an approach based on bone’s biological organization. J. Bone Miner. Res. 16, 597–604 (2001).
pubmed: 11315987
Radspieler, H., Dambacher, M. A., Kissling, R. & Neff, M. Is the amount of trabecular bone-loss dependent on bone mineral density? A study performed by three centres of osteoporosis using high resolution peripheral quantitative computed tomography. Eur. J. Med. Res. 5, 32–39 (2000).
pubmed: 10657287
Fewtrell, M. S., Gordon, I., Biassoni, L. & Cole, T. J. Dual X-ray absorptiometry (DXA) of the lumbar spine in a clinical paediatric setting: does the method of size-adjustment matter? Bone 37, 413–419 (2005).
pubmed: 15996913
Carter, D. R., Bouxsein, M. L. & Marcus, R. New approaches for interpreting projected bone densitometry data. J. Bone Miner. Res. 7, 137–145 (1992).
pubmed: 1570758
Kroger, H., Kotaniemi, A., Vainio, P. & Alhava, E. Bone densitometry of the spine and femur in children by dual-energy x-ray absorptiometry. Bone Miner. 17, 75–85 (1992).
pubmed: 1581707
Crabtree, N. J. et al. Amalgamated reference data for size-adjusted bone densitometry measurements in 3598 children and young adults — the ALPHABET study. J. Bone Miner. Res. 32, 172–180 (2017).
pubmed: 27490028
Adams, J. E. Advances in bone imaging for osteoporosis. Nat. Rev. Endocrinol. 9, 28–42 (2013).
pubmed: 23232496
Silva, B. C. et al. Trabecular bone score: a noninvasive analytical method based upon the DXA image. J. Bone Miner. Res. 29, 518–530 (2014).
pubmed: 24443324
Dalle Carbonare, L. & Giannini, S. Bone microarchitecture as an important determinant of bone strength. J. Endocrinol. Invest. 27, 99–105 (2004).
pubmed: 15053252
Hans, D., Goertzen, A. L., Krieg, M. A. & Leslie, W. D. Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study. J. Bone Miner. Res. 26, 2762–2769 (2011). This paper demonstrates that TBS is a predictor of fracture independent of BMD.
pubmed: 21887701
Winzenrieth, R., Michelet, F. & Hans, D. Three-dimensional (3D) microarchitecture correlations with 2D projection image gray-level variations assessed by trabecular bone score using high-resolution computed tomographic acquisitions: effects of resolution and noise. J. Clin. Densitom. 16, 287–296 (2013).
pubmed: 22749406
Harvey, N. C. et al. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone 78, 216–224 (2015).
pubmed: 25988660
pmcid: 4538791
Simonelli, C. et al. Creation of an age-adjusted, dual-energy x-ray absorptiometry-derived trabecular bone score curve for the lumbar spine in non-Hispanic US White women. J. Clin. Densitom. 17, 314–319 (2014).
pubmed: 24582086
Leslie, W. D. et al. Lumbar spine texture enhances 10-year fracture probability assessment. Osteoporos. Int. 25, 2271–2277 (2014).
pubmed: 24951032
Leslie, W. D. et al. Spine bone texture assessed by trabecular bone score (TBS) predicts osteoporotic fractures in men: the Manitoba Bone Density Program. Bone 67, 10–14 (2014).
pubmed: 24998455
McCloskey, E. V. et al. A meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX. J. Bone Miner. Res. 31, 940–948 (2016). This is a meta-analysis that details the potential adjustments of FRAX for TBS.
pubmed: 26498132
Popp, A. W. et al. Effects of zoledronate versus placebo on spine bone mineral density and microarchitecture assessed by the trabecular bone score in postmenopausal women with osteoporosis: a three-year study. J. Bone Miner. Res. 28, 449–454 (2013).
pubmed: 23018784
Krieg, M. A., Aubry-Rozier, B., Hans, D. & Leslie, W. D. Effects of anti-resorptive agents on trabecular bone score (TBS) in older women. Osteoporos. Int. 24, 1073–1078 (2013).
pubmed: 23052939
Padlina, I. et al. The lumbar spine age-related degenerative disease influences the BMD not the TBS: the Osteolaus cohort. Osteoporos. Int. 28, 909–915 (2017).
pubmed: 27900426
Mazzetti, G. et al. Densitometer-Specific Differences in the Correlation Between Body Mass Index and Lumbar Spine Trabecular Bone Score. J. Clin. Densitom. 20, 233–238 (2017).
pubmed: 28034592
Ward, K. A., Mughal, Z. & Adams, J. E. in Bone Densitometry in Growing Patients Ch. 2 (ed. Sawyer, A. J.) (Humana Press, 2007).
Samelson, E. J. et al. Cortical and trabecular bone microarchitecture as an independent predictor of incident fracture risk in older women and men in the Bone Microarchitecture International Consortium (BoMIC): a prospective study. Lancet Diabetes Endocrinol. 7, 34–43 (2019).
pubmed: 30503163
Isherwood, I., Rutherford, R. A., Pullan, B. R. & Adams, P. H. Bone-mineral estimation by computer-assisted transverse axial tomography. Lancet 2, 712–715 (1976).
pubmed: 61396
Guglielmi, G. et al. Quantitative computed tomography at the axial and peripheral skeleton. Eur. Radiol. 7, 32–42 (1997).
pubmed: 9042764
Engelke, K. Quantitative computed tomography-current status and new developments. J. Clin. Densitom. 20, 309–321 (2017).
pubmed: 28712984
Link, T. M. & Lang, T. F. Axial QCT: clinical applications and new developments. J. Clin. Densitom. 17, 438–448 (2014).
pubmed: 24880494
Sfeir, J. G. et al. Evaluation of cross-sectional and longitudinal changes in volumetric bone mineral density in postmenopausal women using single- versus dual-energy quantitative computed tomography. Bone 112, 145–152 (2018).
pubmed: 29704696
pmcid: 5970096
Ruegsegger, P., Durand, E. P. & Dambacher, M. A. Differential effects of aging and disease on trabecular and compact bone density of the radius. Bone 12, 99–105 (1991).
pubmed: 2064847
Griffith, J. F. & Genant, H. K. Bone mass and architecture determination: state of the art. Best Pract. Res. Clin. Endocrinol. Metab. 22, 737–764 (2008).
pubmed: 19028355
Frost, H. M. The mechanostat: a proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner. 2, 73–85 (1987).
pubmed: 3333019
Krug, R., Burghardt, A. J., Majumdar, S. & Link, T. M. High-resolution imaging techniques for the assessment of osteoporosis. Radiol. Clin. North Am. 48, 601–621 (2010).
pubmed: 20609895
pmcid: 2901255
Burghardt, A. J., Kazakia, G. J., Ramachandran, S., Link, T. M. & Majumdar, S. Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. J. Bone Miner. Res. 25, 983–993 (2010).
pubmed: 19888900
Liu, X. S. et al. High-resolution peripheral quantitative computed tomography can assess microstructural and mechanical properties of human distal tibial bone. J. Bone Miner. Res. 25, 746–756 (2010).
pubmed: 19775199
Gong, B., Mandair, G. S., Wehrli, F. W. & Morris, M. D. Novel assessment tools for osteoporosis diagnosis and treatment. Curr. Osteoporos. Rep. 12, 357–365 (2014).
pubmed: 24879507
pmcid: 6218937
Chang, G. et al. MRI assessment of bone structure and microarchitecture. J. Magn. Reson. Imaging 46, 323–337 (2017).
pubmed: 28165650
pmcid: 5690546
van Staa, T. P. et al. A simple clinical score for estimating the long-term risk of fracture in post-menopausal women. QJM 99, 673–682 (2006).
pubmed: 16998210
Kanis, J. A. et al. Case finding for the management of osteoporosis with FRAX — assessment and intervention thresholds for the UK. Osteoporos. Int. 19, 1395–1408 (2008).
pubmed: 18751937
Kanis, J. A., Johnell, O., Oden, A., Johansson, H. & McCloskey, E. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos. Int. 19, 385–397 (2008).
pubmed: 18292978
pmcid: 2267485
Kanis, J. A. et al. A systematic review of intervention thresholds based on FRAX: A report prepared for the National Osteoporosis Guideline Group and the International Osteoporosis Foundation. Arch. Osteoporos. 11, 25 (2016). This is a systematic review of global osteoporosis guidelines and the intervention thresholds used.
pubmed: 27465509
pmcid: 4978487
Leslie, W. D. et al. Comparison of methods for improving fracture risk assessment in diabetes: the Manitoba BMD Registry. J. Bone Miner. Res. 33, 1923–1930 (2018).
pubmed: 29953670
pmcid: 6193547
Leslie, W. D. et al. Spine-hip discordance and fracture risk assessment: a physician-friendly FRAX enhancement. Osteoporos. Int. 22, 839–847 (2011).
pubmed: 20959961
Hippisley-Cox, J. & Coupland, C. Predicting risk of osteoporotic fracture in men and women in England and Wales: prospective derivation and validation of QFractureScores. BMJ 339, b4229 (2009).
pubmed: 19926696
pmcid: 2779855
Nguyen, N. D., Frost, S. A., Center, J. R., Eisman, J. A. & Nguyen, T. V. Development of prognostic nomograms for individualizing 5-year and 10-year fracture risks. Osteoporos. Int. 19, 1431–1444 (2008). This paper presents a description of the Garvan tool.
pubmed: 18324342
Kanis, J. A., Johansson, H., Harvey, N. C. & McCloskey, E. V. A brief history of FRAX. Arch. Osteoporos. 13, 118 (2018).
pubmed: 30382424
pmcid: 6290984
Compston, J. et al. UK clinical guideline for the prevention and treatment of osteoporosis. Arch. Osteoporos. 12, 43 (2017).
pubmed: 28425085
pmcid: 5397452
McCloskey, E. V., Johansson, H., Harvey, N. C., Compston, J. & Kanis, J. A. Access to fracture risk assessment by FRAX and linked National Osteoporosis Guideline Group (NOGG) guidance in the UK — an analysis of anonymous website activity. Osteoporos. Int. 28, 71–76 (2017).
pubmed: 27438128
Cosman, F. et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos. Int. 25, 2359–2381 (2014).
pubmed: 25182228
pmcid: 4176573
Grossman, J. M. et al. American College of Rheumatology 2010 recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Care Res. 62, 1515–1526 (2010).
Kanis, J. A. et al. SIGN guidelines for Scotland: BMD versus FRAX versus QFracture. Calcif. Tissue Int. 98, 417–425 (2016). This article presents a comparison of the available fracture prediction tools.
pubmed: 26650822
Kanis, J. A. WHO Scientific Group Assessment of Osteoporosis at the Primary Health Care Level: Summary Meeting Report (WHO, 2007).
Barr, R. J., Stewart, A., Torgerson, D. J. & Reid, D. M. Population screening for osteoporosis risk: a randomised control trial of medication use and fracture risk. Osteoporos. Int. 21, 561–568 (2010).
pubmed: 19565176
Clark, E. M. et al. Randomized controlled trial of a primary care-based screening program to identify older women with prevalent osteoporotic vertebral fractures: Cohort for Skeletal Health in Bristol and Avon (COSHIBA). J. Bone Miner. Res. 27, 664–671 (2012).
pubmed: 22113935
Shepstone, L. et al. Screening in the community to reduce fractures in older women (SCOOP): a randomised controlled trial. Lancet 391, 741–747 (2018).
pubmed: 29254858
Emmett, C. L. et al. Acceptability of screening to prevent osteoporotic fractures: a qualitative study with older women. Fam. Pract. 29, 235–242 (2012).
pubmed: 21908537
Si, L., Winzenberg, T. M. & Palmer, A. J. A systematic review of models used in cost-effectiveness analyses of preventing osteoporotic fractures. Osteoporos. Int. 25, 51–60 (2014).
pubmed: 24154803
Hiligsmann, M. et al. A systematic review of cost-effectiveness analyses of drugs for postmenopausal osteoporosis. Pharmacoeconomics 33, 205–224 (2015).
pubmed: 25377850
Brooks, R. EuroQol: the current state of play. Health Policy 37, 53–72 (1996).
pubmed: 10158943
NHS Digital. HRG4+2018/19 reference costs grouper. NHS Digital https://digital.nhs.uk/services/national-casemix-office/downloads-groupers-and-tools/costing---hrg4-2018-19-reference-costs-grouper (updated 29 Mar 2019).
Turner, D. A. et al. The cost-effectiveness of screening in the community to reduce osteoporotic fractures in older women in the UK: economic evaluation of the SCOOP study. J. Bone Miner. Res. 33, 845–851 (2018).
pubmed: 29470854
pmcid: 5993187
McCloskey, E. et al. Management of patients with high baseline hip fracture risk by FRAX reduces hip fractures-a post hoc analysis of the SCOOP study. J. Bone Miner. Res. 33, 1020–1026 (2018).
pubmed: 29480960
pmcid: 6004119
Arnold, M. et al. Microindentation — a tool for measuring cortical bone stiffness? A systematic review. Bone Joint Res. 6, 542–549 (2017).
pubmed: 28924020
pmcid: 5631024
Malgo, F., Hamdy, N. A., Papapoulos, S. E. & Appelman-Dijkstra, N. M. Bone material strength as measured by microindentation in vivo is decreased in patients with fragility fractures independently of bone mineral density. J. Clin. Endocrinol. Metab. 100, 2039–2045 (2015).
pubmed: 25768670
Malgo, F., Hamdy, N. A. T., Papapoulos, S. E. & Appelman-Dijkstra, N. M. Bone material strength index as measured by impact microindentation is low in patients with fractures irrespective of fracture site. Osteoporos. Int. 28, 2433–2437 (2017).
pubmed: 28466137
pmcid: 5524858
Rozental, T. D. et al. Bone material strength index as measured by impact microindentation in postmenopausal women with distal radius and hip fractures. J. Bone Miner. Res. 33, 621–626 (2018).
pubmed: 29115684
Diez-Perez, A. et al. Microindentation for in vivo measurement of bone tissue mechanical properties in humans. J. Bone Miner. Res. 25, 1877–1885 (2010).
pubmed: 20200991
pmcid: 3153354
Guerri-Fernandez, R. C. et al. Microindentation for in vivo measurement of bone tissue material properties in atypical femoral fracture patients and controls. J. Bone Miner. Res. 28, 162–168 (2013).
pubmed: 22887720
Rudang, R. et al. Bone material strength is associated with areal BMD but not with prevalent fractures in older women. Osteoporos. Int. 27, 1585–1592 (2016).
pubmed: 26630975
Rufus-Membere, P., Holloway-Kew, K. L., Diez-Perez, A., Kotowicz, M. A. & Pasco, J. A. Feasibility and tolerability of bone impact microindentation testing: a cross-sectional, population-based study in Australia. BMJ Open 8, e023959 (2018).
pubmed: 30580271
pmcid: 6318509
Coutts, L. V. et al. Local variation in femoral neck cortical bone: in vitro measured bone mineral density, geometry and mechanical properties. J. Clin. Densitom. 20, 205–215 (2017).
pubmed: 26710681
Vasikaran, S. et al. International Osteoporosis Foundation and International Federation of Clinical Chemistry and Laboratory Medicine position on bone marker standards in osteoporosis. Clin. Chem. Lab. Med. 49, 1271–1274 (2011).
pubmed: 21605012
Vasikaran, S. et al. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos. Int. 22, 391–420 (2011).
pubmed: 21184054
van Daele, P. L. et al. Case-control analysis of bone resorption markers, disability, and hip fracture risk: the Rotterdam study. BMJ 312, 482–483 (1996).
pubmed: 8597681
pmcid: 2349981
Garnero, P., Sornay-Rendu, E., Chapuy, M. C. & Delmas, P. D. Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J. Bone Miner. Res. 11, 337–349 (1996).
pubmed: 8852944
Bouxsein, M. L. & Delmas, P. D. Considerations for development of surrogate endpoints for antifracture efficacy of new treatments in osteoporosis: a perspective. J. Bone Miner. Res. 23, 1155–1167 (2008).
pubmed: 18318643
pmcid: 2680170
Wilson, J. M. Principles of screening for disease. Proc. R. Soc. Med. 64, 1255–1256 (1971).
pubmed: 5131278
pmcid: 1813182
Shepstone, L. et al. A pragmatic randomised controlled trial of the effectiveness and cost-effectiveness of screening older women for the prevention of fractures: rationale, design and methods for the SCOOP study. Osteoporos. Int. 23, 2507–2515 (2012).
pubmed: 22314936