Lasing in strained germanium microbridges.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
20 06 2019
Historique:
received: 06 04 2019
accepted: 10 05 2019
entrez: 22 6 2019
pubmed: 22 6 2019
medline: 22 6 2019
Statut: epublish

Résumé

Germanium has long been regarded as a promising laser material for silicon based opto-electronics. It is CMOS-compatible and has a favourable band structure, which can be tuned by strain or alloying with Sn to become direct, as it was found to be required for interband semiconductor lasers. Here, we report lasing in the mid-infrared region (from λ = 3.20 μm up to λ = 3.66 μm) in tensile strained Ge microbridges uniaxially loaded above 5.4% up to 5.9% upon optical pumping, with a differential quantum efficiency close to 100% with a lower bound of 50% and a maximal operating temperature of 100 K. We also demonstrate the effect of a non-equilibrium electron distribution in k-space which reveals the importance of directness for lasing. With these achievements the strained Ge approach is shown to compare well to GeSn, in particular in terms of efficiency.

Identifiants

pubmed: 31222017
doi: 10.1038/s41467-019-10655-6
pii: 10.1038/s41467-019-10655-6
pmc: PMC6586857
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Pagination

2724

Références

Phys Rev Lett. 2012 Aug 3;109(5):057402
pubmed: 23006206
Opt Lett. 2010 Mar 1;35(5):679-81
pubmed: 20195317
Opt Express. 2012 May 7;20(10):11316-20
pubmed: 22565752
Nature. 2005 Jan 20;433(7023):292-4
pubmed: 15635371
Nat Commun. 2012;3:1096
pubmed: 23033072
Nat Commun. 2017 Nov 29;8(1):1845
pubmed: 29184064
Opt Express. 2018 Dec 10;26(25):32500-32508
pubmed: 30645416
Phys Rev B Condens Matter. 1995 Oct 15;52(16):11584-11587
pubmed: 9980275
Opt Express. 2016 Mar 7;24(5):4365-4374
pubmed: 29092264
Opt Express. 2015 Jun 1;23(11):14815-22
pubmed: 26072840
Nat Commun. 2011 Dec 13;2:585
pubmed: 22158440
Nano Lett. 2006 Dec;6(12):2964-8
pubmed: 17163740
Nano Lett. 2013 Jul 10;13(7):3118-23
pubmed: 23758608
Phys Rev B Condens Matter. 1986 Oct 15;34(8):5621-5634
pubmed: 9940397
Phys Rev B Condens Matter. 1994 Aug 15;50(8):5226-5230
pubmed: 9976862
Science. 1994 Apr 22;264(5158):553-6
pubmed: 17732739
Nano Lett. 2016 Apr 13;16(4):2168-73
pubmed: 26907359

Auteurs

F T Armand Pilon (FT)

Laboratory for Micro- and Nanotechnology, Paul Scherrer Institut, 5232, Villigen, Switzerland. francesco.armand-pilon@psi.ch.
Institute for Quantum Electronics, ETH Zürich, 8093, Zürich, Switzerland. francesco.armand-pilon@psi.ch.

A Lyasota (A)

Laboratory for Micro- and Nanotechnology, Paul Scherrer Institut, 5232, Villigen, Switzerland.

Y-M Niquet (YM)

Univ. Grenoble Alpes, CEA, IRIG-DePhy, 38054, Grenoble, France.

V Reboud (V)

Univ. Grenoble Alpes, CEA, LETI, 38054, Grenoble, France.

V Calvo (V)

Univ. Grenoble Alpes, CEA, IRIG-DePhy, 38054, Grenoble, France.

N Pauc (N)

Univ. Grenoble Alpes, CEA, IRIG-DePhy, 38054, Grenoble, France.

J Widiez (J)

Univ. Grenoble Alpes, CEA, LETI, 38054, Grenoble, France.

C Bonzon (C)

Institute for Quantum Electronics, ETH Zürich, 8093, Zürich, Switzerland.

J M Hartmann (JM)

Univ. Grenoble Alpes, CEA, LETI, 38054, Grenoble, France.

A Chelnokov (A)

Univ. Grenoble Alpes, CEA, LETI, 38054, Grenoble, France.

J Faist (J)

Institute for Quantum Electronics, ETH Zürich, 8093, Zürich, Switzerland.

H Sigg (H)

Laboratory for Micro- and Nanotechnology, Paul Scherrer Institut, 5232, Villigen, Switzerland. hans.sigg@psi.ch.

Classifications MeSH