Interplay between Short- and Long-Ranged Forces Leading to the Formation of Ag Nanoparticle Superlattice.
Ag nanoparticles
atomic force microscopy
hydration force
in situ transmission electron microscopy
self-assembly
van der Waals force
Journal
Small (Weinheim an der Bergstrasse, Germany)
ISSN: 1613-6829
Titre abrégé: Small
Pays: Germany
ID NLM: 101235338
Informations de publication
Date de publication:
Aug 2019
Aug 2019
Historique:
received:
18
04
2019
revised:
20
05
2019
pubmed:
22
6
2019
medline:
22
6
2019
entrez:
22
6
2019
Statut:
ppublish
Résumé
Nanoparticle (NP) superlattices have attracted increasing attention due to their unique physicochemical properties. However, key questions persist regarding the correlation between short- and long-range driving forces for nanoparticle assembly and resultant capability to predict the transient and final superlattice structure. Here the self-assembly of Ag NPs in aqueous solutions is investigated by employing in situ liquid cell transmission electron microscopy, combined with atomic force microscopy-based force measurements, and theoretical calculations. Despite the NPs exhibiting instantaneous Brownian motion, it is found that the dynamic behavior of NPs is correlated with the van der Waals force, sometimes unexpectedly over relatively large particle separations. After the NPs assemble into clusters, a delicate balance between the hydration and van der Waals forces results in a distinct distribution of particle separation, which is ascribed to layers of hydrated ions adsorbed on the NP surface. The study demonstrates pivotal roles of the complicated correlation between interparticle forces; potentially enabling the control of particle separation, which is critical for tailoring the properties of NP superlattices.
Identifiants
pubmed: 31225719
doi: 10.1002/smll.201901966
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e1901966Subventions
Organisme : U.S. Department of Energy
ID : DE-AC02-05CH11231
Informations de copyright
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Références
E. V. Shevchenko, M. Ringler, A. Schwemer, D. V. Talapin, T. A. Klar, A. L. Rogach, J. Feldmann, A. P. Alivisatos, J. Am. Chem. Soc. 2008, 130, 3274.
J. J. Urban, D. V. Talapin, E. V. Shevchenko, C. R. Kagan, C. B. Murray, Nat. Mater. 2007, 6, 115.
M. Ibanez, Z. S. Luo, A. Genc, L. Piveteau, S. Ortega, D. Cadavid, O. Dobrozhan, Y. Liu, M. Nachtegaal, M. Zebarjadi, J. Arbiol, M. V. Kovalenko, A. Cabot, Nat. Commun. 2016, 7, 10766.
A. Dong, J. Chen, X. Ye, J. M. Kikkawa, C. B. Murray, J. Am. Chem. Soc. 2011, 133, 13296.
E. Pomerantseva, Y. Gogotsi, Nat. Energy 2017, 2, 17089.
J. Lee, Y. Wu, Z. Peng, J. Colloid Interface Sci. 2018, 529, 505.
Y. Kang, X. Ye, J. Chen, Y. Cai, R. E. Diaz, R. R. Adzic, E. A. Stach, C. B. Murray, J. Am. Chem. Soc. 2012, 135, 42.
P. J. Lu, E. Zaccarelli, F. Ciulla, A. B. Schofield, F. Sciortino, D. A. Weitz, Nature 2008, 453, 499.
P. Keblinski, S. Phillpot, S. Choi, J. Eastman, Int. J. Heat Mass Transfer 2002, 45, 855.
A. Stradner, G. M. Thurston, P. Schurtenberger, J. Phys.: Condens. Matter 2005, 17, S2805.
J. M. Romo-Herrera, R. A. Alvarez-Puebla, L. M. Liz-Marzán, Nanoscale 2011, 3, 1304.
J. N. Israelachvili, Intermolecular and Surface Forces, Academic Press, San Diego, CA, USA 2011.
J. Israelachvili, H. Wennerström, Nature 1996, 379, 219.
U. Anand, J. Lu, D. Loh, Z. Aabdin, U. Mirsaidov, Nano Lett. 2016, 16, 786.
J.-C. Loudet, A. M. Alsayed, J. Zhang, A. G. Yodh, Phys. Rev. Lett. 2005, 94, 018301.
J. Lee, E. Nakouzi, M. Song, B. Wang, J. Chun, D. S. Li, ACS Nano 2018, 12, 12778.
D. Weitz, J. Huang, M. Lin, J. Sung, Phys. Rev. Lett. 1984, 53, 1657.
J. Chun, C. J. Mundy, G. K. Schenter, J. Phys. Chem. B 2015, 119, 5873.
E. Nakouzi, J. A. Soltis, B. A. Legg, G. K. Schenter, X. Zhang, T. R. Graham, K. M. Rosso, L. M. Anovitz, J. J. De Yoreo, J. Chun, ACS Nano 2018, 12, 10114.
D. Li, J. Chun, D. Xiao, W. Zhou, H. Cai, L. Zhang, K. M. Rosso, C. J. Mundy, G. K. Schenter, J. J. De Yoreo, Proc. Natl. Acad. Sci. USA 2017, 114, 7537.
J. N. Israelachvili, R. M. Pashley, Nature 1983, 306, 249.
A. Halperin, M. Tirrell, T. Lodge,in Macromolecules: Synthesis, Order and Advanced Properties, Springer, Berlin, Germany 1992, pp. 31-71.
J. Kim, M. R. Jones, Z. Ou, Q. Chen, ACS Nano 2016, 10, 9801.
B. Luo, J. W. Smith, Z. Ou, Q. Chen, Acc. Chem. Res. 2017, 50, 1125.
C. Zhu, S. Liang, E. Song, Y. Zhou, W. Wang, F. Shan, Y. Shi, C. Hao, K. Yin, T. Zhang, Nat. Commun. 2018, 9, 421.
Q. Chen, H. Cho, K. Manthiram, M. Yoshida, X. Ye, A. P. Alivisatos, ACS Cent. Sci. 2015, 1, 33.
X. Tian, H. Zheng, U. Mirsaidov, Nanoscale 2017, 9, 10044.
A. S. Powers, H.-G. Liao, S. N. Raja, N. D. Bronstein, A. P. Alivisatos, H. Zheng, Nano Lett. 2016, 17, 15.
A. J. Goldman, R. G. Cox, H. Brenner, Chem. Eng. Sci. 1967, 22, 637.
W. B. Russel, W. Russel, D. A. Saville, W. R. Schowalter, Colloidal Dispersions, Cambridge University Press, Cambridge, UK 1991.
H.-Y. Kim, J. O. Sofo, D. Velegol, M. W. Cole, A. A. Lucas, Langmuir 2007, 23, 1735.
E. R. Dufresne, T. M. Squires, M. P. Brenner, D. G. Grier, Phys. Rev. Lett. 2000, 85, 3317.
P. P. Lele, J. W. Swan, J. F. Brady, N. J. Wagner, E. M. Furst, Soft Matter 2011, 7, 6844.
A. Dolan, S. F. Edwards, Proc. R. Soc. London, Ser. A 1974, 337, 509.
A. Dolan, W. F. Edwards, Proc. R. Soc. London, Ser. A 1975, 343, 427.
M. Manciu, E. Ruckenstein, Langmuir 2001, 17, 7061.
S. Bhattacharjee, M. Elimelech, M. Borkovec, Croat. Chem. Acta 1998, 71, 883.
H. Söngen, R. Bechstein, A. Kühnle, J. Phys.: Condens. Matter 2017, 29, 274001.