Preferential Tumor Accumulation of Polyglycerol Functionalized Nanodiamond Conjugated with Cyanine Dye Leading to Near-Infrared Fluorescence In Vivo Tumor Imaging.
Animals
Benzothiazoles
/ chemistry
Carbocyanines
/ chemistry
Fluorescence
Glycerol
/ chemistry
Green Fluorescent Proteins
/ metabolism
HeLa Cells
Humans
Hydrodynamics
Infrared Rays
Mice, Inbred BALB C
Mice, Nude
Nanodiamonds
/ chemistry
Neoplasms
/ diagnostic imaging
Optical Imaging
Polymers
/ chemistry
Static Electricity
Time Factors
EPR effect
nanodiamonds
polyglycerol
stealth effect
tumor imaging
Journal
Small (Weinheim an der Bergstrasse, Germany)
ISSN: 1613-6829
Titre abrégé: Small
Pays: Germany
ID NLM: 101235338
Informations de publication
Date de publication:
11 2019
11 2019
Historique:
received:
17
04
2019
revised:
27
05
2019
pubmed:
2
7
2019
medline:
2
10
2020
entrez:
2
7
2019
Statut:
ppublish
Résumé
Preferential accumulation of nanoparticles in a tumor is realized commonly by combined effects of active and passive targeting. However, passive targeting based on an enhanced permeation and retention (EPR) effect is not sufficient to observe clear tumor fluorescence images in most of the in vivo experiments using tumor-bearing mice. Herein, polyglycerol-functionalized nanodiamonds (ND-PG) conjugated with cyanine dye (Cy7) are synthesized and it is found that the resulting ND-PG-Cy7 is preferentially accumulated in the tumor, giving clear fluorescence in in vivo and ex vivo fluorescence images. One of the plausible reasons is the longer in vivo blood circulation time of ND-PG-Cy7 (half-life: 58 h determined by the pharmacokinetic analysis) than that of other nanoparticles (half-life: <20 h in most of the previous reports). In a typical example, the fluorescence intensity of tumors increases due to continuous tumor accumulation of ND-PG-Cy7, even more than one week postinjection. This may be owing to the stealth effect of PG that was reported previously, avoiding recognition and excretion by reticuloendothelial cells, which are abundant in liver and spleen. In fact, the fluorescence intensities from the liver and spleen is similar to those from other organs, while the tumor exhibits much stronger fluorescence in the ex vivo image.
Identifiants
pubmed: 31259483
doi: 10.1002/smll.201901930
doi:
Substances chimiques
Benzothiazoles
0
Carbocyanines
0
Nanodiamonds
0
Polymers
0
Green Fluorescent Proteins
147336-22-9
polyglycerol
25618-55-7
cyanine dye 7
57282-58-3
Glycerol
PDC6A3C0OX
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e1901930Commentaires et corrections
Type : ErratumIn
Informations de copyright
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Références
H. Maeda, Y. Matsumura, Cancer Res. 1986, 46, 6387.
Y. Nakamura, A. Mochida, P. L. Choyke, H. Kobayashi, Bioconjugate Chem. 2016, 27, 2225.
J. Gao, K. Chen, R. Xie, J. Xie, Y. Yan, Z. Cheng, X. Peng, X. Chen, Bioconjugate Chem. 2010, 21, 604.
J. H. Ryu, M. Shin, S. A. Kim, S. Lee, H. Kim, H. Koo, B. Kim, H. K. Song, S. H. Kim, K. Choi, I. C. Kwon, H. Jeon, K. Kim, Biomaterials 2013, 34, 9149.
X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, S. Nie, Nat. Biotechnol. 2004, 22, 969.
J. N. Belling, J. A. Jackman, S. Yorulmaz Avsar, J. H. Park, Y. Wang, M. G. Potroz, A. R. Ferhan, P. S. Weiss, N. J. Cho, ACS Nano 2016, 10, 10161.
L. Zhao, T. Chano, S. Morikawa, Y. Saito, A. Shiino, S. Shimizu, T. Maeda, T. Irie, S. Aonuma, H. Okabe, T. Kimura, T. Inubushi, N. Komatsu, Adv. Funct. Mater. 2012, 22, 5107.
L. Zhao, Y. H. Xu, H. Qin, S. Abe, T. Akasaka, T. Chano, F. Watari, T. Kimura, N. Komatsu, X. Chen, Adv. Funct. Mater. 2014, 24, 5348.
L. Zhao, Y. H. Xu, T. Akasaka, S. Abe, N. Komatsu, F. Watari, X. Chen, Biomaterials 2014, 35, 5393.
L. Zhao, T. Takimoto, M. Ito, N. Kitagawa, T. Kimura, N. Komatsu, Angew. Chem., Int. Ed. 2011, 50, 1388.
K. Kim, J. H. Kim, H. Park, Y. S. Kim, K. Park, H. Nam, S. Lee, J. H. Park, R. W. Park, I. S. Kim, K. Choi, S. Y. Kim, K. Park, I. C. Kwon, J. Controlled Release 2010, 146, 219.
J. Zhao, J. Chen, S. Ma, Q. Liu, L. Huang, X. Chen, K. Lou, W. Wang, Acta Pharm. Sin. B 2018, 8, 320.
W. Shang, C. Fang, J. Tian, T. Guan, K. Wang, X. Yang, H. Li, Bioconjugate Chem. 2017, 28, 2859.
T. Longguang, Z. Fuwu, Y. Fei, S. Wenjing, S. Menglin, C. Xiaoyuan, Z. Xianzhong, S. Xiaolian, Biomaterials 2017, 129, 28.
T. Du, C. Zhao, F. ur Rehman, L. Lai, X. Li, Y. Sun, S. Luo, H. Jiang, N. Gu, M. Selke, X. Wang, Adv. Funct. Mater. 2017, 27, 1603926.
L. S. J. Chen, C. Liu, G. Zeng, Y. You, H. Wang, X. Gong, R. Zheng, J. Kim, C. Kim, Nanoscale Res. Lett. 2016, 11, 85.
X. Liu, H. Jiang, J. Ye, C. Zhao, S. Gao, C. Wu, C. Li, J. Li, X. Wang, Adv. Funct. Mater. 2016, 26, 8694.
H. K. Maeda, H. J. Wu, T. Sawa, Y. Matsumura, Solutions 2000, 65, 271.
J. K. N. Kotagiri, Int. J. Nanomed. 2014, 9, 85.
H. K. M. Longmire, P. L. Choyke, Nanomedicine 2008, 3, 703.
H. Kiwada, T. Ishida, A. S. Abu Lila, T. Shimizu, K. Nawata, Int. J. Pharm. 2013, 456, 235.
E. R. Trivedi, K. Moin, A. G. M. Barrett, M. B. Olive, B. F. Sloane, A. S. Harney, B. M. Hoffman, I. Podgorski, T. J. Meade, Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 1284.
X. Yang, X. Yang, C. Shi, C. Shi, R. Tong, R. Tong, W. Qian, W. Qian, H. E. Zhau, H. E. Zhau, R. Wang, R. Wang, G. Zhu, G. Zhu, J. Cheng, J. Cheng, V. W. Yang, V. W. Yang, T. Cheng, T. Cheng, M. Henary, M. Henary, L. Strekowski, L. Strekowski, L. W. K. Chung, L. W. K. Chung, Clin. Cancer Res. 2010, 16, 2833.
S. Fan, S. Luo, T. Cheng, L. Zhang, X. Tan, Y. Zhou, C. Shi, T. Liu, C. Zhang, Y. Zhu, Y. Su, Biomaterials 2010, 31, 6612.
K. Shiga, M. Hara, T. Nagasaki, T. Sato, H. Takahashi, H. Takeyama, Cancers 2015, 7, 2443.
I. F. T. O. Trédan, C. M. Galmarini, K. Patel, JNCI, J. Natl. Cancer Inst. 2007, 99, 1441.
P. Zigrino, S. Löffek, C. Mauch, Biochimie 2005, 87, 321.
H. Qin, K. Maruyama, T. Amano, T. Murakami, N. Komatsu, Mater. Res. Express 2016, 3, 105049.
L. Zhao, T. Takimoto, T. Kimura, N. Komatsu, J. Indian Chem. Soc. 2011, 88, 1787.
X. Li, L. Zhao, J. Ye, Q. Liang, M. Xu, N. Komatsu, G. Yuan, Q. Zhang, W. Gao, X. Chen, J. Biomed. Nanotechnol. 2017, 13, 280.