PD-L1 and PD1 expression in post-transplantation lymphoproliferative disease (PTLD) of childhood and adolescence: An inter- and intra-individual descriptive study covering the whole spectrum of PTLD categories.
Adolescent
B7-H1 Antigen
/ metabolism
Child
Child, Preschool
Female
Gene Expression Regulation, Neoplastic
Genetic Heterogeneity
Hematopoietic Stem Cell Transplantation
Humans
Infant
Lymphoproliferative Disorders
/ classification
Male
Programmed Cell Death 1 Receptor
/ metabolism
Retrospective Studies
Tumor Microenvironment
Young Adult
PD-L1
PD1
PTLD category
expression
post-transplantation lymphoproliferative disease (PTLD)
Journal
Cancer medicine
ISSN: 2045-7634
Titre abrégé: Cancer Med
Pays: United States
ID NLM: 101595310
Informations de publication
Date de publication:
08 2019
08 2019
Historique:
received:
23
05
2019
revised:
20
06
2019
accepted:
20
06
2019
pubmed:
4
7
2019
medline:
15
8
2020
entrez:
4
7
2019
Statut:
ppublish
Résumé
Therapy of children with post-transplantation lymphoproliferative disorder (PTLD) after hematopoietic stem cell (HSCT) and solid organ transplantation (SOT) can be challenging. In this retrospective study, we investigated PD-L1 and PD1 expression in all PTLD categories of childhood and adolescence to see whether checkpoint inhibition with PD-L1/PD1 inhibitors may serve as a therapy option. We included 21 patients aged 19 years or younger (at date of transplant) with PTLD following SOT or HSCT having adequate tumor samples available (n = 29). Using immunohistochemistry, we evaluated PD-L1/PD1 expression on both tumor cells and cells of the microenvironment in all samples. Availability of consecutively matched tumor samples during 6 of 21 patients' disease courses also allowed an intra-individual assessment of PD-L1/PD1 expression. We observed lower PD-L1 and higher PD1 expression in non-destructive lesions, and higher PD-L1 and lower PD1 expression in polymorphic and, in particular, in monomorphic PTLD, mostly diffuse large B-cell lymphomas (DLBCL, n = 10/21). The amount of PD-L1- and PD1-positive cells changed in the opposite way in sequential biopsies of the same individual correlating well with the PTLD category. This is the first comprehensive pediatric study assessing PD-L1 and PD1 expression on tumor cells and in the microenvironment of PTLD including not only monomorphic, but also non-destructive early lesions. PD-L1 expression of the tumor cells inversely correlated with PD1 expression in surrounding tissues, with the highest expression in DLBCL. Since PTLD can be therapeutically challenging, our results indicate a potential efficacy of checkpoint inhibitors if standard immune- and/or chemotherapy fail or are impossible. We therefore recommend routine staining of PD-L1 and PD1 in all PTLD categories.
Identifiants
pubmed: 31269329
doi: 10.1002/cam4.2394
pmc: PMC6712474
doi:
Substances chimiques
B7-H1 Antigen
0
CD274 protein, human
0
PDCD1 protein, human
0
Programmed Cell Death 1 Receptor
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4656-4668Informations de copyright
© 2019 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Références
Nat Rev Dis Primers. 2016 Jan 28;2:15088
pubmed: 27189056
Am J Transplant. 2012 Apr;12(4):976-83
pubmed: 22226225
Haematologica. 2014 Feb;99(2):346-52
pubmed: 24056821
Curr Top Microbiol Immunol. 2015;390(Pt 1):17-22
pubmed: 26424641
Front Pharmacol. 2018 May 22;9:536
pubmed: 29910728
Cancer Med. 2019 Aug;8(10):4656-4668
pubmed: 31269329
Clin Cancer Res. 2013 Jul 1;19(13):3462-73
pubmed: 23674495
Hum Pathol. 2011 Apr;42(4):552-7
pubmed: 21237493
Blood. 2004 Jan 1;103(1):275-82
pubmed: 14504078
Science. 2015 Apr 3;348(6230):56-61
pubmed: 25838373
Transpl Int. 2016 Nov;29(11):1226-1236
pubmed: 27564782
Clin Cancer Res. 2014 Jun 1;20(11):2862-72
pubmed: 24727328
Histopathology. 2016 Jun;68(7):1079-89
pubmed: 26426431
Haematologica. 2016 Jul;101(7):803-11
pubmed: 27365460
Cancer. 2017 Dec 1;123(23):4663-4671
pubmed: 28759103
Am J Transplant. 2011 Jan;11(1):146-51
pubmed: 21199354
J Virol. 1982 Dec;44(3):834-44
pubmed: 6294333
Clin Neuropathol. 2014 Jan-Feb;33(1):42-9
pubmed: 24359606
J Clin Oncol. 2009 Mar 20;27(9):1470-6
pubmed: 19224853
Blood. 2017 Nov 30;130(22):2420-2430
pubmed: 28893733
Hum Pathol. 2016 Aug;54:17-24
pubmed: 27045512
Pediatr Blood Cancer. 2019 May;66(5):e27571
pubmed: 30637917
Leukemia. 2017 Apr;31(4):988-991
pubmed: 28035137
Clin Cancer Res. 2011 Jul 1;17(13):4232-44
pubmed: 21540239
Am J Transplant. 2012 Nov;12(11):3069-75
pubmed: 22883417
Clin Infect Dis. 2013 Jan;56(1):84-92
pubmed: 23042966
Blood. 2016 Jun 16;127(24):3026-34
pubmed: 27030389
Blood. 2010 Oct 28;116(17):3268-77
pubmed: 20628145
Blood. 2015 Nov 5;126(19):2193-201
pubmed: 26239088
Curr Rheumatol Rep. 2016 Jan;18(1):1
pubmed: 26700911
Br J Haematol. 2018 Aug;182(3):330-343
pubmed: 29741774
Blood. 2016 May 19;127(20):2375-90
pubmed: 26980727
Leuk Lymphoma. 2019 Feb;60(2):376-384
pubmed: 30033844
Transplantation. 2012 Jan 15;93(1):73-81
pubmed: 22129761
Am J Transplant. 2012 Nov;12(11):3061-8
pubmed: 23072522
J Clin Oncol. 2016 Aug 10;34(23):2690-7
pubmed: 27069084
Clin Transplant. 2011 Jul-Aug;25(4):E430-6
pubmed: 21518001
Am J Transplant. 2017 Oct;17(10):2650-2658
pubmed: 28371054
Am J Transplant. 2017 Mar;17(3):611-616
pubmed: 27458691