Magnetic monopole noise.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
07 2019
07 2019
Historique:
received:
30
10
2018
accepted:
29
04
2019
pubmed:
5
7
2019
medline:
5
7
2019
entrez:
5
7
2019
Statut:
ppublish
Résumé
Magnetic monopoles
Identifiants
pubmed: 31270461
doi: 10.1038/s41586-019-1358-1
pii: 10.1038/s41586-019-1358-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
234-239Références
Dirac, P. Quantised singularities in the electromagnetic field. Proc. R. Soc. Lond. A 133, 60–72 (1931).
doi: 10.1098/rspa.1931.0130
Hooft, G. Magnetic monopoles in unified gauge theories. Nucl. Phys. B 79, 276–284 (1974).
doi: 10.1016/0550-3213(74)90486-6
Polyakov, A. M. Particle spectrum in the quantum field theory. J. Exp. Theor. Phys. Lett. 20, 194–195 (1974).
Cabrera, B. First results from a superconductive detector for moving magnetic monopoles. Phys. Rev. Lett. 48, 1378–1381 (1982).
doi: 10.1103/PhysRevLett.48.1378
Ryzhkin, I. A. Magnetic relaxation of rare-earth pyrochlores. J. Exp. Theor. Phys. 101, 481–486 (2005).
doi: 10.1134/1.2103216
Castelnovo, C., Moessner, R. & Sondhi, S. L. Magnetic monopoles in spin ice. Nature 451, 42–45 (2008).
doi: 10.1038/nature06433
Klyuev, A., Ryzhkin, M. & Yakimov, A. Statistics of fluctuations of magnetic monopole concentration in spin ice. Fluct. Noise Lett. 16, 1750035 (2017).
doi: 10.1142/S0219477517500353
Kirschner, F. K. K., Flicker, F., Yacoby, A., Yao, N. & Blundell, S. J. Proposal for the detection of magnetic monopoles in spin ice via nanoscale magnetometry. Phys. Rev. B 97, 140402 (2018).
doi: 10.1103/PhysRevB.97.140402
Castelnovo, C., Moessner, R. & Sondhi, S. Spin ice, fractionalization, and topological order. Annu. Rev. Condens. Matter Phys. 3, 35–55 (2012).
doi: 10.1146/annurev-conmatphys-020911-125058
Jaubert, L. & Holdsworth, P. Magnetic monopole dynamics in spin ice. J. Phys. Condens. Matter 23, 164222 (2011).
doi: 10.1088/0953-8984/23/16/164222
Rosenkranz, S. et al. Crystal-field interaction in the pyrochlore magnet Ho
doi: 10.1063/1.372565
den Hertog, B. & Gingras, M. Dipolar interactions and the origin of spin ice in Ising pyrochlore magnets. Phys. Rev. Lett. 84, 3430–3433 (2000).
doi: 10.1103/PhysRevLett.84.3430
Ramirez, A., Hayashi, A., Cava, R., Siddharthan, R. & Shastry, B. Zero-point entropy in ‘spin ice’. Nature 399, 333–335 (1999).
doi: 10.1038/20619
Kaiser, V. et al. Emergent electrochemistry in spin ice: Debye–Hückel theory and beyond. Phys. Rev. B 98, 144413 (2018).
doi: 10.1103/PhysRevB.98.144413
Burgess, R. E. The statistics of charge carrier fluctuations in semiconductors. Proc. Phys. Soc. B 69, 1020–1027 (1956).
doi: 10.1088/0370-1301/69/10/308
van Vliet, K. M. & Fassett, J. R. Fluctuation Phenomena in Solids (ed. Burgess, R. E.) (Academic Press, 1965).
Mitin, V., Reggiani, L. & Varani, L. in Noise and Fluctuations Control in Electronic Devices Ch. 2 (American Scientific Publishers, 2002).
Konczakowska, A. & Wilamowski, B. M. in Fundamentals of Industrial Electronics Ch. 11 (Taylor and Francis, 2011).
Melko, R. G. & Gingras, M. J. P. Monte Carlo studies of the dipolar spin ice model. J. Phys. Condens. Matter 16, 1277–1319 (2004).
doi: 10.1088/0953-8984/16/43/R02
Vitale, S., Cavalleri, A., Cerdonio, M., Maraner, A. & Prodi, G. A. Thermal equilibrium noise with 1/f spectrum in a ferromagnetic alloy: anomalous temperature dependence. J. Appl. Phys. 76, 6332–6334 (1994).
doi: 10.1063/1.358257
Reim, W., Koch, R., Malozemoff, A., Ketchen, M. & Maletta, H. Magnetic equilibrium noise in spin-glasses: Eu
doi: 10.1103/PhysRevLett.57.905
Snyder, J. et al. Low-temperature spin freezing in the Dy
doi: 10.1103/PhysRevB.69.064414
Matsuhira, K. et al. Spin dynamics at very low temperature in spin ice Dy
doi: 10.1143/JPSJ.80.123711
Yaraskavitch, L. R. et al. Spin dynamics in the frozen state of the dipolar spin ice material Dy
doi: 10.1103/PhysRevB.85.020410
Kassner, E. R. et al. Supercooled spin liquid state in the frustrated pyrochlore Dy
doi: 10.1073/pnas.1511006112
Fennell, T. et al. Neutron scattering investigation of the spin ice state in Dy
doi: 10.1103/PhysRevB.70.134408
Quilliam, J. A., Meng, S., Mugford, C. G. A. & Kycia, J. B. Evidence of spin glass dynamics in dilute LiHo
doi: 10.1103/PhysRevLett.101.187204
Morris, D. et al. Dirac strings and magnetic monopoles in the spin ice Dy
doi: 10.1126/science.1178868
Bramwell, S. T. et al. Measurement of the charge and current of magnetic monopoles in spin ice. Nature 461, 956–959 (2009).
doi: 10.1038/nature08500
Bovo, L., Bloxsom, J., Prabhakaran, D., Aeppli, G. & Bramwell, S. Brownian motion and quantum dynamics of magnetic monopoles in spin ice. Nat. Commun. 4, 1535–1542 (2013).
doi: 10.1038/ncomms2551
Giblin, S., Bramwell, S., Holdsworth, P., Prabhakaran, D. & Terry, I. Creation and measurement of long-lived magnetic monopole currents in spin ice. Nat. Phys. 7, 252–258 (2011).
doi: 10.1038/nphys1896
Kaiser, V., Bramwell, S. T., Holdsworth, P. C. W. & Moessner, R. ac Wien effect in spin ice, manifest in nonlinear, nonequilibrium susceptibility. Phys. Rev. Lett. 115, 037201 (2015).
doi: 10.1103/PhysRevLett.115.037201
Paulsen, C. et al. Experimental signature of the attractive Coulomb force between positive and negative magnetic monopoles in spin ice. Nat. Phys. 12, 661–666 (2016).
doi: 10.1038/nphys3704
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N. & Teller, A. H. Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953).
doi: 10.1063/1.1699114
Eyvazov, A. B. et al. Common glass-forming spin liquid state in the pyrochlore magnets Dy
doi: 10.1103/PhysRevB.98.214430
Takatsu, H. et al. AC susceptibility of the dipolar spin ice Dy
doi: 10.7566/JPSJ.82.104710