Antiinflammatory constituents of Atractylodes chinensis rhizome improve glomerular lesions in immunoglobulin A nephropathy model mice.
Atractylodes chinensis rhizome
Atractylodin
Immunoglobulin A nephropathy
Kampo medicine
Nitric oxide
Journal
Journal of natural medicines
ISSN: 1861-0293
Titre abrégé: J Nat Med
Pays: Japan
ID NLM: 101518405
Informations de publication
Date de publication:
Jan 2020
Jan 2020
Historique:
received:
24
04
2019
accepted:
26
06
2019
pubmed:
5
7
2019
medline:
2
4
2020
entrez:
5
7
2019
Statut:
ppublish
Résumé
The crude drug Sojutsu, as defined by the Japanese Pharmacopoeia, is the rhizome of Atractylodes lancea De Candolle, Atractylodes chinensis Koidzumi, or their interspecific hybrids (Asteraceae). Sojutsu is one of the traditional Kampo formulas, which are administered to patients suffering from stomach disorders, edema, and nephrotic syndrome. Although antiinflammatory effects of Sojutsu have been reported, its effects on the liver and kidney have not been extensively investigated. Here, we used a Sojutsu sample identified as A. chinensis rhizome and isolated several constituents from its ethyl acetate (EtOAc)-soluble fraction that decreased production of the proinflammatory mediator nitric oxide (NO) in interleukin 1β-treated rat hepatocytes. Among the constituents in this fraction, atractylodin showed the highest activity to suppress NO production, whereas hinesol, β-eudesmol, and α-bisabolol showed low activity. Atractylodin decreased the levels of inducible nitric oxide synthase, tumor necrosis factor α, and lipocalin 2 messenger RNAs (mRNAs). The EtOAc-soluble fraction of the A. chinensis rhizome extract was administered daily for 20 weeks to high immunoglobulin A (HIGA) mice, whose pathological findings resemble human immunoglobulin A nephropathy. This fraction decreased the weight of white adipose tissue and decreased mesangial proliferation and immunoglobulin A deposition in glomeruli. These results indicate that the EtOAc-soluble fraction, which included antiinflammatory constituents, may be responsible for improvement of the mesangial lesions in HIGA mice.
Identifiants
pubmed: 31270736
doi: 10.1007/s11418-019-01342-3
pii: 10.1007/s11418-019-01342-3
pmc: PMC7176606
doi:
Substances chimiques
Anti-Inflammatory Agents
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
51-64Commentaires et corrections
Type : ErratumIn
Références
The Committee on the Japanese Pharmacopoeia (2016) The Japanese Pharmacopoeia, 17th edn. The Minister of Health, Labour and Welfare, Tokyo
Shiba M, Kondo K, Miki E, Yamaji H, Morota T, Terabayashi S, Takeda S, Sasaki H, Miyamoto K, Aburada M (2006) Identification of medicinal Atractylodes based on ITS sequences of nrDNA. Biol Pharm Bull 29:315–320
doi: 10.1248/bpb.29.315
Guo Y, Kondo K, Terabayashi S, Yamamoto Y, Shimada H, Fujita M, Kawasaki T, Maruyama T, Goda Y, Mizukami H (2006) DNA authentication of So-jutsu (Atractylodes lancea rhizome) and Byaku-jutsu (Atractylodes rhizome) obtained in the market based on the nucleotide sequence of the 18S–5.8S rDNA internal transcribed spacer region. J Nat Med 60:149–156
doi: 10.1007/s11418-006-0032-8
Nishikawa Y, Watanabe Y, Seto T (1975) Studies on the evaluation of crude drugs (1): comparative studies on the components of Atractylodes rhizomes. Syoyakugaku Zasshi 29:139–146
Yoshioka I, Nishino T, Tani T, Kitagawa I (1976) On the constituents of the rhizomes of Atractylodes lancea DC var. chinensis KITAMURA (“Jin-changzhu”) and Atractylodes ovata DC (“Chinese baizu”): the gas chromatographic analysis of the crude drug “Zhu”. Yakugakukai Zasshi 96:1229–1235
doi: 10.1248/yakushi1947.96.10_1229
Takeda O, Miki E, Terabayashi S, Okada M, Lu Y, He HS, He SA (1995) Variation of essential oil components of Atractylodes lancea growing in China. Nat Med 49:18–23
Chen LG, Jan YS, Tsai PW, Norimoto H, Michihara S, Murayama C, Wang CC (2016) Anti-inflammatory and antinociceptive constituents of Atractylodes japonica Koidzumi. J Agric Food Chem 64:2254–2262
doi: 10.1021/acs.jafc.5b05841
Pautz A, Art J, Hahn S, Nowag S, Voss C, Kleinert H (2010) Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide 23:75–93
doi: 10.1016/j.niox.2010.04.007
Colasanti M, Suzuki H (2000) The dual personality of NO. Trends Pharmacol Sci 21:249–252
doi: 10.1016/S0165-6147(00)01499-1
Shimato Y, Ota M, Asai K, Atsumi T, Tabuchi Y, Makino T (2018) Comparison of byakujutsu (Atractylodes rhizome) and sojutsu (Atractylodes lancea rhizome) on anti-inflammatory and immunostimulative effects in vitro. J Nat Med 72:192–201
doi: 10.1007/s11418-017-1131-4
Kim S, Jung E, Kim JH, Park YH, Lee J, Park D (2011) Inhibitory effects of (−)-α-bisabolol on LPS-induced inflammatory response in RAW264.7 macrophages. Food Chem Toxicol 49:2580–2585
doi: 10.1016/j.fct.2011.06.076
Kitade H, Sakitani K, Inoue K, Masu Y, Kawada N, Hiramatsu Y, Kamiyama Y, Okumura T, Ito S (1996) Interleukin 1β markedly stimulates nitric oxide formation in the absence of other cytokines or lipopolysaccharide in primary cultured rat hepatocytes but not in Kupffer cells. Hepatology 23:797–802
pubmed: 8666334
Miki H, Tokuhara K, Oishi M, Nakatake R, Tanaka Y, Kaibori M, Nishizawa M, Okumura T, Kon M (2016) Japanese Kampo Saireito has a liver-protective effect through the inhibition of inducible nitric oxide synthase induction in primary cultured rat hepatocytes. J Parenter Enter Nutr 40:1033–1041
doi: 10.1177/0148607115575035
Takimoto Y, Qian HY, Yoshigai E, Okumura T, Ikeya Y, Nishizawa M (2013) Gomisin N in the herbal drug gomishi (Schisandra chinensis) suppresses inducible nitric oxide synthase gene via C/EBPβ and NF-κB in rat hepatocytes. Nitric Oxide 28:47–56
doi: 10.1016/j.niox.2012.10.003
Fujii A, Okuyama T, Wakame K, Okumura T, Ikeya Y, Nishizawa M (2017) Identification of anti-inflammatory constituents in Phellodendri Cortex and Coptidis Rhizoma by monitoring the suppression of nitric oxide production. J Nat Med 71:745–756
doi: 10.1007/s11418-017-1107-4
Yamauchi Y, Okuyama T, Ishii T, Okumura T, Ikeya Y, Nishizawa M (2019) Sakuranetin downregulates inducible nitric oxide synthase expression by affecting interleukin-1 receptor and CCAAT/enhancer-binding protein β. J Nat Med 73:353–368
doi: 10.1007/s11418-018-1267-x
Muso E, Yoshida H, Takeuchi E, Yashiro M, Matsushima H, Oyama A, Suyama K, Kawamura T, Kamata T, Miyawaki S, Izui S, Sasayama S (1996) Enhanced production of glomerular extracellular matrix in a new mouse strain of high serum IgA ddY mice. Kidney Int 50:1946–1957
doi: 10.1038/ki.1996.517
Yeo SC, Cheung CK, Barratt J (2018) New insights into the pathogenesis of IgA nephropathy. Pediatr Nephrol 33:763–777
doi: 10.1007/s00467-017-3699-z
Ohno N, Yoshigai E, Okuyama T, Yamamoto Y, Okumura T, Sato K, Ikeya Y, Nishizawa M (2012) Chlorogenic acid from the Japanese herbal medicine Kinginka (Flos Lonicerae japonicae) suppresses the expression of inducible nitric oxide synthase in rat hepatocytes. HOAJ Biol 1:2. https://doi.org/10.7243/2050-0874-1-2
doi: 10.7243/2050-0874-1-2
Chen HP, Yang K, You CX, Zheng LS, Cai Q, Wang CF, Du SS (2015) Repellency and toxicity of essential oil from Atractylodes chinensis rhizomes against Liposcelis bostrychophila. J Food Process Preserv 39:1913–1918
doi: 10.1111/jfpp.12429
Lafontaine J, Mongrain M, Sergent-Guay M, Ruest L, Deslongghamos P (1980) The total synthesis of (±)-hinesol and (±)-epihinesol. Can J Chem 58:2460–2476
doi: 10.1139/v80-396
Du Y, Lu X (2003) A phosphine-catalyzed [3 + 2] cycloaddition strategy leading to the first total synthesis of (−)-hinesol. J Org Chem 68:6463–6465
doi: 10.1021/jo034281f
Buddhusukh D, Magnus P (1975) Synthesis of (+)-hinesol and 10-epi-(+)-hinesol. J C S Chem Comm 23:952–953
doi: 10.1039/c39750000952
Duan JA, Wang L, Qian S, Su S, Tang Y (2008) A new cytotoxic prenylated dihydrobenzofuran derivative and other chemical constituents from the rhizomes of Atractylodes lancea DC. Arch Pharm Res 31:965–969
doi: 10.1007/s12272-001-1252-z
Kanemaki T, Kitade H, Hiramatsu Y, Kamiyama Y, Okumura T (1993) Stimulation of glycogen degradation by prostaglandin E
doi: 10.1016/0090-6980(93)90122-N
Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, and [
doi: 10.1016/0003-2697(82)90118-X
Tanemoto R, Okuyama T, Matsuo H, Okumura T, Ikeya Y, Nishizawa M (2015) The constituents of licorice (Glycyrrhiza uralensis) differentially suppress nitric oxide production in interleukin-1β-treated hepatocytes. Biochem Biophys Rep 2:153–159
pubmed: 29124157
pmcid: 5668654
Matsui K, Nishizawa M, Ozaki T, Kimura T, Hashimoto I, Yamada M, Kaibori M, Kamiyama Y, Ito S, Okumura T (2008) Natural antisense transcript stabilizes inducible nitric oxide synthase messenger RNA in rat hepatocytes. Hepatology 47:686–697
doi: 10.1002/hep.22036
Inaba H, Yoshigai E, Okuyama T, Murakoshi M, Sugiyama K, Nishino H, Nishizawa M (2015) Antipyretic analgesic drugs have different mechanisms for regulation of the expression of inducible nitric oxide synthase in hepatocytes and macrophages. Nitric Oxide 44:61–70
doi: 10.1016/j.niox.2014.12.001
Moschen AR, Adolph TE, Gerner RR, Wieser V, Tilg H (2017) Lipocalin-2: a master mediator of intestinal and metabolic inflammation. Trends Endocrinol Metab 28:388–397
doi: 10.1016/j.tem.2017.01.003
Yoshimura H, Ito M, Kuwahara Y, Ishii A, Tsuritani K, Nakamura A, Hirasawa Y, Nagamatsu T (2008) Downregulated expression in high IgA (HIGA) mice and the renal protective role of meprinβ. Life Sci 82:899–908
doi: 10.1016/j.lfs.2008.02.006
Hamilton JA, Achuthan A (2013) Colony stimulating factors and myeloid cell biology in health and disease. Trends Immunol 34:81–89
doi: 10.1016/j.it.2012.08.006
Yoshioka K, Takemura T, Murakami K, Okada M, Hino S, Miyamoto H, Maki S (1993) Transforming growth factor-beta protein and mRNA in glomeruli in normal and diseased human kidneys. Lab Investig 68:154–163
pubmed: 8441250
Kamino T, Shimokura T, Morita Y, Tezuka Y, Nishizawa M, Tanaka K (2016) Comparative analysis of the constituents in Saposhnikoviae Radix and Glehniae Radix cum Rhizoma by monitoring inhibitory activity of nitric oxide production. J Nat Med 70:253–259
doi: 10.1007/s11418-016-0969-1
Perkins ND (2006) Post-translational modifications regulating the activity and function of the nuclear factor κB pathway. Oncogene 25:6717–6730
doi: 10.1038/sj.onc.1209937
Yoshigai E, Hara T, Inaba H, Hashimoto I, Tanaka Y, Kaibori M, Kimura T, Okumura T, Kwon AH, Nishizawa M (2014) Interleukin-1β induces tumor necrosis factor-α secretion from rat hepatocytes. Hepatol Res 44:571–583
doi: 10.1111/hepr.12157
Fujitsuka N, Asakawa A, Morinaga A, Amitani MS, Amitani H, Katsuura G, Sawada Y, Sudo Y, Uezono Y, Mochiki E, Sakata I, Sakai T, Hanazaki K, Yada T, Yakabi K, Sakuma E, Ueki T, Niijima A, Nakagawa K, Okubo N, Takeda H, Asaka M, Inui A (2016) Increased ghrelin signaling prolongs survival in mouse models of human aging through activation of sirtuin1. Mol Psychiatry 21:1613–1623
doi: 10.1038/mp.2015.220