Advances of In Vivo Flow Cytometry on Cancer Studies.
circulating tumor cells
in vivo flow cytometry
prevalent cancers in Asia
Journal
Cytometry. Part A : the journal of the International Society for Analytical Cytology
ISSN: 1552-4930
Titre abrégé: Cytometry A
Pays: United States
ID NLM: 101235694
Informations de publication
Date de publication:
01 2020
01 2020
Historique:
received:
03
04
2019
revised:
27
05
2019
accepted:
14
06
2019
pubmed:
6
7
2019
medline:
15
5
2021
entrez:
6
7
2019
Statut:
ppublish
Résumé
Cancer is a big threat to human life. Asia has about 60% of the global population and accounts for half of global cancer incidence and mortality. Circulating tumor cells (CTCs) have been a good biomarker for cancer diagnosis, staging, and prognosis. Conventional detection methods of CTCs require drawing blood. It may disturb the biological environment and limited real-time monitoring. in vivo flow cytometry (IVFC) is a burgeoning technique that allows noninvasive detection of CTCs in vivo. Here, we review the technical development of IVFC based on various contrast principles, including fluorescence IVFC, photoacoustic IVFC, imaging IVFC, and label-free IVFC. This powerful tool has been applied widely in many areas of cancer-related studies, especially the CTC studies. We review applications of IVFC in preclinical studies on prevalent cancers in Asia, including liver cancer, blood cancer, and so forth. Other cancer-related studies in breast cancer, prostate cancer, cancer-related stem cell research and drug studies are also reviewed. © 2019 International Society for Advancement of Cytometry.
Identifiants
pubmed: 31273910
doi: 10.1002/cyto.a.23851
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
15-23Informations de copyright
© 2019 International Society for Advancement of Cytometry.
Références
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394-424.
Poste G, Fidler IJ. The pathogenesis of cancer metastasis. Nature 1980;283:139-146.
Nguyen DX, Massagué J. Genetic determinants of cancer metastasis. Nat Rev Genet 2007;8:341-352.
Gupta GP, Massagué J. Cancer metastasis: Building a framework. Cell 2006;127:679-695.
Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science 2011;331:1559-1564.
Paget S. The distribution of secondary growths in cancer of the breast. Lancet 1889;133:571-573.
Fidler IJ. The pathogenesis of cancer metastasis: the'seed and soil'hypothesis revisited. Nat Rev Cancer 2003;3:453-458.
Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, Reuben JM, Doyle GV, Allard WJ, Terstappen LW. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 2004;351:781-791.
Cohen SJ, Punt C, Iannotti N, Saidman BH, Sabbath KD, Gabrail NY, Picus J, Morse M, Mitchell E, Miller MC. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. Clin Oncol 2008;26:3213-3221.
De Bono JS, Scher HI, Montgomery RB, Parker C, Miller MC, Tissing H, Doyle GV, Terstappen LW, Pienta KJ, Raghavan D. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res 2008;14:6302-6309.
Alix-Panabieres C, Pantel K. Circulating tumor cells: Liquid biopsy of cancer. Clin Chem 2013;59:110-118.
Plaks V, Koopman CD, Werb Z. Circulating tumor cells. Science 2013;341:1186-1188.
Vona G, Sabile A, Louha M, Sitruk V, Romana S, Schütze K, Capron F, Franco D, Pazzagli M, Vekemans M. Isolation by size of epithelial tumor cells: A new method for the immunomorphological and molecular characterization of circulating tumor cells. Am J Pathol 2000;156:57-63.
Paterlini-Brechot P, Benali NL. Circulating tumor cells (CTC) detection: Clinical impact and future directions. Cancer Lett 2007;253:180-204.
Riethdorf S, Fritsche H, Müller V, Rau T, Schindlbeck C, Rack B, Janni W, Coith C, Beck K, Jänicke F. Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the CellSearch system. Clin Cancer Res 2007;13:920-928.
Stott SL, Hsu C-H, Tsukrov DI, Yu M, Miyamoto DT, Waltman BA, Rothenberg SM, Shah AM, Smas ME, Korir GK. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci U S A 2010;107:18392-18397.
Yu M, Stott S, Toner M, Maheswaran S, Haber DA. Circulating tumor cells: Approaches to isolation and characterization. J Cell Biol 2011;192:373-382.
Tuchin VV, Tárnok A, Zharov VP. In vivo flow cytometry: A horizon of opportunities. Cytometry A 2011;79:737-745.
Hartmann C, Patil R, Lin CP, Niedre M. Fluorescence detection, enumeration and characterization of single circulating cells in vivo: Technology, applications and future prospects. Phys Med Biol 2017;63:01TR01.
Zharov VP, Galanzha EI, Shashkov EV, Kim J-W, Khlebtsov NG, Tuchin VV. Photoacoustic flow cytometry: Principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo. J Biomed Opt 2007;12:051503.
Novak J, Georgakoudi I, Wei X, Prossin A, Lin C. In vivo flow cytometer for real-time detection and quantification of circulating cells. Opt Lett 2004;29:77-79.
Boutrus S, Greiner CA, Hwu D, Chan M, Kuperwasser C, Lin CP, Georgakoudi I. Portable two-color in vivo flow cytometer for real-time detection of fluorescently-labeled circulating cells. J Biomed Opt 2007;12:020507.
Suo Y, Liu T, Xie C, Wei D, Tan X, Wu L, Wang X, He H, Shi G, Wei X. Near infrared in vivo flow cytometry for tracking fluorescent circulating cells. Cytometry A 2015;87:878-884.
Ding Y, Wang J, Fan Z, Wei D, Shi R, Luo Q, Zhu D, Wei X. Signal and depth enhancement for in vivo flow cytometer measurement of ear skin by optical clearing agents. Biomed Opt Express 2013;4:2518-2526.
Zettergren EW, Vickers D, Murthy SK, Niedre MJ, Runnels JM, Lin CP. Instrument for fluorescence sensing of circulating cells with diffuse light in mice in vivo. J Biomed Opt 2012;17:037001.
Pera VE, Tan X, Runnels JM, Sardesai NR, Lin CP, Niedre M. Diffuse fluorescence fiber probe for in vivo detection of circulating cells. J Biomed Opt 2017;22:037004.
Tan X, Patil R, Bartosik P, Runnels JM, Lin CP, Niedre M. In vivo flow cytometry of extremely rare circulating cells. Sci Rep 2019;9:3366.
He W, Wang H, Hartmann LC, Cheng J-X, Low PS. In vivo quantitation of rare circulating tumor cells by multiphoton intravital flow cytometry. Proc Natl Acad Sci U S A 2007;104:11760-11765.
Tkaczyk ER, Zhong CF, Ye JY, Myc A, Thomas T, Cao Z, Duran-Struuck R, Luker KE, Luker GD, Norris TB. In vivo monitoring of multiple circulating cell populations using two-photon flow cytometry. Opt Commun 2008;281:888-894.
Hu Y, Tang W, Cheng P, Zhou Q, Tian X, Wei X, He H. Monitoring circulating tumor cells in vivo by a confocal microscopy system. Cytometry A 2018;95:657-663.
Zhang L, Alt C, Li P, White RM, Zon LI, Wei X, Lin CP. An optical platform for cell tracking in adult zebrafish. Cytometry A 2012;81:176-182.
Zharov VP, Zharov VP, Galanzha EI, Shashkov EV, Shashkov EV, Tuchin VV, Khlebtsov NG, Tuchin VV. In vivo photoacoustic flow cytometry for monitoring of circulating single cancer cells and contrast agents. Opt Lett 2006;31:3623-3625.
Juratli MA, Menyaev YA, Sarimollaoglu M, Melerzanov AV, Nedosekin DA, Culp WC, Suen JY, Galanzha EI, Zharov VP. Noninvasive label-free detection of circulating white and red blood clots in deep vessels with a focused photoacoustic probe. Biomed Opt Express 2018;9:5667-5677.
Nedosekin DA, Sarimollaoglu M, Galanzha EI, Sawant R, Torchilin VP, Verkhusha VV, Ma J, Frank MH, Biris AS, Zharov VP. Synergy of photoacoustic and fluorescence flow cytometry ofcirculating cells with negative and positive contrasts. J Biophotonics 2013;6:425-434.
Needles A, Heinmiller A, Sun J, Theodoropoulos C, Bates D, Hirson D, Yin M, Foster FS. Development and initial application of a fully integrated photoacoustic micro-ultrasound system. IEEE Trans Ultrason Ferroelectr Freq Control 2013;60:888-897.
Hai P, Zhou Y, Zhang R, Ma J, Li Y, Shao J-Y, Wang LV. Label-free high-throughput detection and quantification of circulating melanoma tumor cell clusters by linear-array-based photoacoustic tomography. J Biomed Opt 2016;22:041004.
Zeng Y, Xu J, Li D, Li L, Wen Z, Qu JY. Label-free in vivo flow cytometry in zebrafish using two-photon autofluorescence imaging. Opt Lett 2012;37:2490-2492.
Yang W, Li A, Suo Y, Lu F-K, Xie XS. Simultaneous two-color stimulated Raman scattering microscopy by adding a fiber amplifier to a 2 ps OPO-based SRS microscope. Opt Lett 2017;42:523-526.
Markovic S, Li B, Pera V, Sznaier M, Camps O, Niedre M. A computer vision approach to rare cell in vivo fluorescence flow cytometry. Cytometry A 2013;83:1113-1123.
Markovic S, Li S, Niedre MJ. Performance of computer vision in vivo flow cytometry with low fluorescence contrast. J Biomed Opt 2015;20:035005.
Zeng X, Wei D, Wei X. Background modeling method to identify interactions between circulating tumor cells and dendritic cells. 2018. 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). p. 806-809.
Wei D, Zeng X, Yang Z, Zhou Q, Weng X, He H, Gu Z, Wei X. Visualizing interactions of circulating tumor cell and dendritic cell in the blood circulation using in vivo imaging flow cytometry. IEEE Trans Biomed Eng 2019;early access.
Zharov VP, Galanzha EI, Tuchin VV. In vivo photothermal flow cytometry: Imaging and detection of individual cells in blood and lymph flow. J Cell Biochem 2006;97:916-932.
Zharov VP, Galanzha EI, Tuchin VV. Integrated photothermal flow cytometry in vivo. J Biomed Opt 2005;10:051502.
Galanzha EI, Kim JW, Zharov VP. Nanotechnology-based molecular photoacoustic and photothermal flow cytometry platform for in-vivo detection and killing of circulating cancer stem cells. J Biophotonics 2009;2:725-735.
Zharov VP, Galanzha EI, Tuchin VV. Photothermal image flow cytometry in vivo. Opt Lett 2005;30:628-630.
Zharov VP, Galanzha EI, Tuchin VV. Photothermal flow cytometry in vitro for detection and imaging of individual moving cells. Cytometry A 2007;71:191-206.
Biris AS, Galanzha EI, Li Z, Mahmood M, Xu Y, Zharov VP. In vivo Raman flow cytometry for real-time detection of carbon nanotube kinetics in lymph, blood, and tissues. J Biomed Opt 2009;14:021006.
Xie L, Yang Y, Sun X, Qiao X, Liu Q, Song K, Kong B, Su X. 2D light scattering static cytometry for label-free single cell analysis with submicron resolution: Novel 2D light scattering static cytometer. Cytometry A 2015;87:1029-1037.
Paudel HP, Jung Y, Raphael A, Alt C, Wu J, Runnels J, Lin CP. in vivo flow cytometry for blood cell analysis using differential epi-detection of forward scattered light. 2018. Proc of SPIE. p. 104970G-1.
Greiner C, Hunter M, Rius F, Huang P, Georgakoudi I. Confocal backscattering-based detection of leukemic cells in flowing blood samples. Cytometry A 2011;79A:874-883.
Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, Znaor A, Bray F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 2019;144:1941-1953.
Li Y, Fan Z, Guo J, Liu G, Tan X, Wang C, Gu Z, Wei X. Circulation times of hepatocellular carcinoma cells by in vivo flow cytometry. Chin Opt Lett 2010;8:953-956.
Yan J, Fan Z, Wu X, Xu M, Jiang J, Tan C, Wu W, Wei X, Zhou J. Circulating tumor cells are correlated with disease progression and treatment response in an orthotopic hepatocellular carcinoma model. Cytometry A 2015;87:1020-1028.
Li Y, Guo J, Wang C, Fan Z, Liu G, Wang C, Gu Z, Damm D, Mosig A, Wei X. Circulation times of prostate cancer and hepatocellular carcinoma cells by in vivo flow cytometry. Cytometry A 2011;79A:848-854.
Fan Z, Yan J, Liu G, Tan X, Weng X, Wu W, Zhou J, Wei X. Real-time monitoring of rare circulating hepatocellular carcinoma cells in an orthotopic model by in vivo flow cytometry assesses resection on metastasis. Cancer Res 2012;72:2683-2691.
Lee JH, Lee DS, Lee JJ, Chang YH, Jin JY, Jo D-Y, Bang SM, Kim HJ, Kim JS, Kim K, et al. Multiple myeloma in Korea: Past, present, and future perspectives. Experience of the Korean multiple myeloma working party. Int J Hematol 2010;92:52-57.
Huang S-Y, Yao M, Tang J-L, Lee W-C, Tsay W, Cheng A-L, Wang C-H, Chen Y-C, Shen M-C, Tien H-F. Epidemiology of multiple myeloma in Taiwan: Increasing incidence for the past 25 years and higher prevalence of extramedullary myeloma in patients younger than 55 years. Cancer 2007;110:896-905.
Sipkins DA, Wei X, Wu JW, Runnels JM, Côté D, Means TK, Luster AD, Scadden DT, Lin CP. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 2005;435:969-973.
Alsayed Y, Ngo H, Runnels J, Leleu X, Singha UK, Pitsillides CM, Spencer JA, Kimlinger T, Ghobrial JM, Jia X, et al. Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood 2007;109:2708-2717.
Runnels JM, Carlson AL, Pitsillides CM, Thompson B, Wu J, Spencer JA, Kohler JMJ, Azab A, Moreau A-S, Rodig SJ, et al. Optical techniques for tracking multiple myeloma engraftment, growth, and response to therapy. J Biomed Opt 2011;16:011006-011006.
Wang F, Wei D, Suo Y, Zhu X, Yuan Y, Jiang H, Wei X, Chen T. In vivo flow cytometry combined with intravital microscopy to monitor synchronous kinetics of transplanted BM-MNCs in peripheral blood and bone marrow. Blood 2018;132:3312.
Juratli MA, Sarimollaoglu M, Siegel ER, Nedosekin DA, Galanzha EI, Suen JY, Zharov VP. Real-time monitoring of circulating tumor cell release during tumor manipulation using in vivo photoacoustic and fluorescent flow cytometry. Head Neck 2014;36:1207-1215.
Hwu D, Boutrus S, Greiner CA, Georgakoudi I, DiMeo T, Kuperwasser C. Assessment of the role of circulating breast cancer cells in tumor formation and metastatic potential using in vivo flow cytometry. J Biomed Opt 2011;16:040501.
Nolan J, Nedosekin DA, Galanzha EI, Zharov VP. Detection of apoptotic circulating tumor cells using in vivo fluorescence flow cytometry. Cytometry Part A 2018;95:664-671.
Nolan J, Sarimollaoglu M, Nedosekin DA, Jamshidi-Parsian A, Galanzha EI, Kore RA, Griffin RJ, Zharov VP. In vivo flow cytometry of circulating tumor-associated exosomes. Anal Cell Pathol 2016;2016:12.
Georgakoudi I, Solban N, Novak J, Rice WL, Wei X, Hasan T, Lin CP. In vivo flow cytometry: A new method for enumerating circulating cancer cells. Cancer Res 2004;64:5044-5047.
Guo J, Fan Z, Gu Z, Wei X. Studying the role of macrophages in circulating prostate cancer cells by in vivo flow cytometry. J Innov Opt Health Sci 2012;5:1250027.
Pang K, Xie C, Yang Z, Suo Y, Zhu X, Wei D, Weng X, Wei X, Gu Z. Monitoring circulating prostate cancer cells by in vivo flow cytometry assesses androgen deprivation therapy on metastasis: Monitoring circulating prostate cancer cells. Cytometry A 2018;93:517-524.
Galanzha EI, Shashkov EV, Spring PM, Suen JY, Zharov VP. In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser. Cancer Res 2009;69:7926-7934.
Nedosekin DA, Sarimollaoglu M, Ye J-H, Galanzha EI, Zharov VP. In vivo ultra-fast photoacoustic flow cytometry of circulating human melanoma cells using near-infrared high-pulse rate lasers. Cytometry A 2011;79A:825-833.
He Y, Wang L, Shi J, Yao J, Li L, Zhang R, Huang C, Zou J, Wang L. In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells. Sci Rep 2016;6:39616.
Cho EH, Wendel M, Luttgen M, Yoshioka C, Marrinucci D, Lazar D, Schram E, Nieva J, Bazhenova L, Morgan A, et al. Characterization of circulating tumor cell aggregates identified in patients with epithelial tumors. Phys Biol 2012;9:016001.
Aceto N, Bardia A, Miyamoto D, Donaldson M, Wittner B, Spencer J, Yu M, Pely A, Engstrom A, Zhu H, et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 2014;158:1110-1122.
Suo Y, Xie C, Zhu X, Fan Z, Yang Z, He H, Wei X. Proportion of circulating tumor cell clusters increases during cancer metastasis. Cytometry A 2017;91:250-253.
Wang L, Fan Z, Zhang J, Changyi Y, Huang C, Gu Y, Xu Z, Tang Z, Lu W, Wei X, et al. Evaluating tumor metastatic potential by imaging intratumoral acidosis via pH-activatable near-infrared fluorescent probe. Int J Cancer 2015;136:E107-E116.
Wei D, Pang K, Song Q, Suo Y, He H, Weng X, Gao X, Wei X. Noninvasive monitoring of nanoparticle clearance and aggregation in blood circulation by in vivo flow cytometry. J Control Release 2018;278:66-73.
Labelle M, Begum S, Hynes RO. Platelets guide the formation of early metastatic niches. Proc Natl Acad Sci U S A 2014;111:E3053-E3061.
Zhang Y, Zhu X, Chen X, Chen Q, Zhou W, Guo Q, Lu Y, Li C, Zhang Y, Liang D, et al. Activated platelets-targeting micelles with controlled drug release for effective treatment of primary and metastatic triple negative breast cancer. Adv Funct Mater 2019;29:1806620.
Kang T, Zhu Q, Wei D, Feng J, Yao J, Jiang T, Song Q, Wei X, Chen H, Gao X, et al. Nanoparticles coated with neutrophil membranes can effectively treat cancer metastasis. ACS Nano 2017;11:1397-1411.
Yao J, Feng J, Gao X, Wei D, Kang T, Zhu Q, Jiang T, Wei X, Chen J. Neovasculature and circulating tumor cells dual-targeting nanoparticles for the treatment of the highly-invasive breast cancer. Biomaterials 2017;113:1-17.
Galanzha EI, Shashkov EV, Kelly T, Kim J-W, Yang L, Zharov VP. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat Nanotechnol 2009;4:855-860.
Xie C, Yang Z, Suo Y, Chen Q, Wei D, Weng X, Gu Z, Wei X. Systemically infused mesenchymal stem cells show different homing profiles in healthy and tumor mouse models. Stem Cell Transl Med 2017;6:1120-1131.