Starvation-Induced Differential Virotherapy Using an Oncolytic Measles Vaccine Virus.
Antineoplastic Agents
/ pharmacology
Cell Line
Cell Survival
/ drug effects
Colorectal Neoplasms
/ pathology
Culture Media
/ chemistry
Fasting
Humans
Measles Vaccine
/ pharmacology
Measles virus
/ physiology
Oncolytic Virotherapy
Oncolytic Viruses
/ physiology
Starvation
/ pathology
Virus Replication
fasting
measles vaccine virus
oncolysis
starvation
virotherapy
Journal
Viruses
ISSN: 1999-4915
Titre abrégé: Viruses
Pays: Switzerland
ID NLM: 101509722
Informations de publication
Date de publication:
05 07 2019
05 07 2019
Historique:
received:
23
05
2019
revised:
27
06
2019
accepted:
01
07
2019
entrez:
10
7
2019
pubmed:
10
7
2019
medline:
1
8
2020
Statut:
epublish
Résumé
Starvation sensitizes tumor cells to chemotherapy while protecting normal cells at the same time, a phenomenon defined as differential stress resistance. In this study, we analyzed if starvation would also increase the oncolytic potential of an oncolytic measles vaccine virus (MeV-GFP) while protecting normal cells against off-target lysis. Human colorectal carcinoma (CRC) cell lines as well as human normal colon cell lines were subjected to various starvation regimes and infected with MeV-GFP. The applied fasting regimes were either short-term (24 h pre-infection) or long-term (24 h pre- plus 96 h post-infection). Cell-killing features of (i) virotherapy, (ii) starvation, as well as (iii) the combination of both were analyzed by cell viability assays and virus growth curves. Remarkably, while long-term low-serum, standard glucose starvation potentiated the efficacy of MeV-mediated cell killing in CRC cells, it was found to be decreased in normal colon cells. Interestingly, viral replication of MeV-GFP in CRC cells was decreased in long-term-starved cells and increased after short-term low-glucose, low-serum starvation. In conclusion, starvation-based virotherapy has the potential to differentially enhance MeV-mediated oncolysis in the context of CRC cancer patients while protecting normal colon cells from unwanted off-target effects.
Identifiants
pubmed: 31284426
pii: v11070614
doi: 10.3390/v11070614
pmc: PMC6669668
pii:
doi:
Substances chimiques
Antineoplastic Agents
0
Culture Media
0
Measles Vaccine
0
Types de publication
Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Références
Cell. 2000 Jan 7;100(1):57-70
pubmed: 10647931
Science. 1956 Feb 24;123(3191):309-14
pubmed: 13298683
Nat Rev Cancer. 2004 Jul;4(7):505-18
pubmed: 15229476
Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8215-20
pubmed: 18378900
Prostate. 2009 Jan 1;69(1):33-40
pubmed: 18785179
Cancer Res. 2008 Dec 15;68(24):10238-46
pubmed: 19074892
Nature. 2009 Apr 9;458(7239):725-31
pubmed: 19279572
Prostate. 2009 Jul 1;69(10):1128-41
pubmed: 19367568
Science. 2009 May 22;324(5930):1029-33
pubmed: 19460998
Curr Opin Investig Drugs. 2009 Dec;10(12):1372-82
pubmed: 19943208
J Virol. 2010 Apr;84(7):3287-302
pubmed: 20106927
Cancer Res. 2010 Feb 15;70(4):1564-72
pubmed: 20145127
Aging (Albany NY). 2009 Dec 31;1(12):988-1007
pubmed: 20157582
Mol Ther. 2010 Nov;18(11):1927-36
pubmed: 20808290
Nat Rev Cancer. 2011 Feb;11(2):85-95
pubmed: 21258394
Oncotarget. 2011 Mar;2(3):222-33
pubmed: 21447859
Oncogene. 2011 Jul 28;30(30):3305-16
pubmed: 21516129
Eur J Pharmacol. 2011 Sep 30;667(1-3):56-65
pubmed: 21640718
Aging (Albany NY). 2011 Nov;3(11):1039-40
pubmed: 22147496
PLoS Pathog. 2011 Dec;7(12):e1002422
pubmed: 22174682
Mol Ther. 2012 Apr;20(4):749-58
pubmed: 22186794
Sci Transl Med. 2012 Mar 7;4(124):124ra27
pubmed: 22323820
Int J Mol Sci. 2012;13(2):1886-918
pubmed: 22408430
Cancer Cell. 2012 Mar 20;21(3):297-308
pubmed: 22439925
Gene Ther. 2013 Apr;20(4):444-9
pubmed: 22914495
Expert Opin Biol Ther. 2013 Apr;13(4):483-502
pubmed: 23289598
J Virol. 2013 Mar;87(6):3484-501
pubmed: 23302892
Biomed Res Int. 2013;2013:387362
pubmed: 23586034
Int J Oncol. 2013 Jul;43(1):103-12
pubmed: 23612727
Gynecol Oncol. 2013 Aug;130(2):362-8
pubmed: 23676551
Gene Ther. 2013 Nov;20(11):1033-41
pubmed: 23719065
Cell Metab. 2013 Aug 6;18(2):153-61
pubmed: 23791484
Nat Cell Biol. 2013 Jul;15(7):713-20
pubmed: 23817233
Oncoimmunology. 2013 Jun 1;2(6):e24612
pubmed: 23894720
PLoS Pathog. 2013;9(9):e1003599
pubmed: 24086130
Gynecol Oncol. 2014 Jan;132(1):194-202
pubmed: 24246772
Cell Res. 2014 Jan;24(1):42-57
pubmed: 24343578
Cell Metab. 2014 Mar 4;19(3):407-17
pubmed: 24606898
Mol Cell. 2014 Apr 24;54(2):224-33
pubmed: 24766886
Mayo Clin Proc. 2014 Jul;89(7):926-33
pubmed: 24835528
Nat Rev Cancer. 2014 Aug;14(8):559-67
pubmed: 24990523
Oncoimmunology. 2014 Jun 01;3:e28694
pubmed: 25097804
J Thorac Oncol. 2014 Aug;9(8):1101-10
pubmed: 25157763
Int J Cancer. 2015 Mar 1;136(5):E359-86
pubmed: 25220842
Chem Biol Interact. 2015 Apr 25;231:119-26
pubmed: 25643584
Oncoimmunology. 2014 Dec 15;3(10):e958937
pubmed: 25941579
Biol Chem. 2015 Dec;396(12):1269-80
pubmed: 26068902
Oncotarget. 2015 Jul 30;6(21):18545-57
pubmed: 26176887
BMC Cancer. 2015 Oct 05;15:652
pubmed: 26438237
Cancer Discov. 2016 Jan;6(1):6
pubmed: 26552414
Am J Cancer Res. 2016 Jan 15;6(2):300-11
pubmed: 27186404
PLoS Pathog. 2016 May 17;12(5):e1005648
pubmed: 27187079
BMC Cancer. 2016 Jun 10;16:360
pubmed: 27282289
Clin Nutr. 2017 Feb;36(1):11-48
pubmed: 27637832
J Clin Pathol. 2017 May;70(5):410-416
pubmed: 27729429
Cancer Chemother Pharmacol. 2017 Apr;79(4):697-703
pubmed: 28289863
Viruses. 2017 May 22;9(5):
pubmed: 28531150
Support Care Cancer. 2017 Oct;25(10):3001-3004
pubmed: 28710645
Breast Cancer Res Treat. 2018 Jan;167(2):485-493
pubmed: 29027598
Oncotarget. 2018 Jan 17;9(8):8155-8164
pubmed: 29487723
Clin Colorectal Cancer. 2018 Sep;17(3):231-239.e7
pubmed: 29653857
BMC Cancer. 2018 Apr 27;18(1):476
pubmed: 29699509
Lung Cancer. 2018 Jun;120:142-148
pubmed: 29748010
Cancers (Basel). 2018 May 25;10(6):null
pubmed: 29799479
Nat Rev Cancer. 2019 Mar;19(3):177
pubmed: 30651606