Parallel genetic evolution and speciation from standing variation.
Adaptation
parallel evolution
speciation
theory
Journal
Evolution letters
ISSN: 2056-3744
Titre abrégé: Evol Lett
Pays: England
ID NLM: 101715791
Informations de publication
Date de publication:
Apr 2019
Apr 2019
Historique:
received:
16
07
2018
accepted:
14
02
2019
entrez:
11
7
2019
pubmed:
11
7
2019
medline:
11
7
2019
Statut:
epublish
Résumé
Adaptation often proceeds from standing variation, and natural selection acting on pairs of populations is a quantitative continuum ranging from parallel to divergent. Yet, it is unclear how the extent of parallel genetic evolution during adaptation from standing variation is affected by the difference in the direction of selection between populations. Nor is it clear whether the availability of standing variation for adaptation affects progress toward speciation in a manner that depends on the difference in the direction of selection. We conducted a theoretical study investigating these questions and have two primary findings. First, the extent of parallel genetic evolution between two populations rapidly declines as selection changes from fully parallel toward divergent, and this decline is steeper in organisms with more traits (i.e., greater dimensionality). This rapid decline happens because small differences in the direction of selection greatly reduce the fraction of alleles that are beneficial in both populations. For example, populations adapting to optima separated by an angle of 33° might have only 50% of potentially beneficial alleles in common. Second, relative to when adaptation is from only new mutation, adaptation from standing variation improves hybrid fitness under parallel selection and reduces hybrid fitness under divergent selection. Under parallel selection, genetic parallelism from standing variation reduces the phenotypic segregation variance in hybrids, thereby increasing mean fitness in the parental environment. Under divergent selection, larger pleiotropic effects of alleles fixed from standing variation cause maladaptive transgressive phenotypes when combined in hybrids. Adaptation from standing genetic variation therefore slows progress toward speciation under parallel selection and facilitates progress toward speciation under divergent selection.
Identifiants
pubmed: 31289688
doi: 10.1002/evl3.106
pii: EVL3106
pmc: PMC6591551
doi:
Banques de données
Dryad
['10.5061/dryad.g68d124']
Types de publication
Journal Article
Langues
eng
Pagination
129-141Références
Evolution. 2000 Feb;54(1):13-20
pubmed: 10937178
Genetics. 2001 Feb;157(2):875-84
pubmed: 11157004
Evolution. 2001 Jan;55(1):198-201
pubmed: 11263739
Mol Ecol. 2001 Mar;10(3):551-68
pubmed: 11298968
Philos Trans R Soc Lond B Biol Sci. 2002 Apr 29;357(1420):471-92
pubmed: 12028786
Proc Biol Sci. 2004 Sep 22;271(1551):1881-7
pubmed: 15347509
Genetics. 2005 Apr;169(4):2335-52
pubmed: 15716498
Nat Rev Genet. 2005 Feb;6(2):119-27
pubmed: 15716908
Am Nat. 2006 Dec;168 Suppl 6:S14-24
pubmed: 17109325
Genetics. 1931 Mar;16(2):97-159
pubmed: 17246615
Nat Rev Genet. 2007 Aug;8(8):610-8
pubmed: 17637733
Science. 1921 Sep 9;54(1393):223
pubmed: 17792870
Trends Ecol Evol. 2008 Jan;23(1):38-44
pubmed: 18006185
Genetics. 2008 Nov;180(3):1645-60
pubmed: 18832353
Science. 2009 Feb 6;323(5915):737-41
pubmed: 19197053
Proc Natl Acad Sci U S A. 2009 Jun 16;106 Suppl 1:9955-62
pubmed: 19528639
Proc R Soc Lond B Biol Sci. 1990 May 22;240(1297):29-37
pubmed: 1972992
Proc Biol Sci. 2011 Feb 7;278(1704):399-407
pubmed: 20702458
Science. 2010 Sep 17;329(5998):1518-21
pubmed: 20847270
Science. 2010 Sep 17;329(5998):1521-3
pubmed: 20847271
Nature. 2012 Apr 04;484(7392):55-61
pubmed: 22481358
Mol Ecol. 2012 Sep;21(18):4578-92
pubmed: 22849585
Evolution. 2014 May;68(5):1244-56
pubmed: 24410181
Am Nat. 2014 Feb;183(2):257-68
pubmed: 24464199
Mol Ecol. 2014 Aug;23(16):3944-56
pubmed: 24635356
Elife. 2014 Jun 04;3:null
pubmed: 24898754
Nature. 2014 Jul 17;511(7509):307-11
pubmed: 24909991
Nature. 2014 Sep 18;513(7518):375-381
pubmed: 25186727
Evolution. 2015 Jun;69(6):1433-1447
pubmed: 25908434
Genetics. 2015 Aug;200(4):1255-74
pubmed: 26038348
Genetics. 2015 Sep;201(1):229-42
pubmed: 26199234
Ecol Lett. 2016 Jan;19(1):71-80
pubmed: 26612568
Am Nat. 2015 Oct;186 Suppl 1:S5-23
pubmed: 26656217
Annu Rev Ecol Evol Syst. 2014 Nov 1;45:179-201
pubmed: 26740803
Evolution. 2016 Jul;70(7):1450-64
pubmed: 27252049
J Evol Biol. 2017 Feb;30(2):326-337
pubmed: 27801996
Science. 2016 Dec 09;354(6317):1305-1308
pubmed: 27940876
Genet Res. 1989 Aug;54(1):59-77
pubmed: 2806907
PLoS Biol. 2017 Jan 23;15(1):e1002591
pubmed: 28114370
Evolution. 1998 Aug;52(4):935-949
pubmed: 28565213
Evolution. 1979 Mar;33(1Part2):402-416
pubmed: 28568194
Am Nat. 2017 Jul;190(1):1-16
pubmed: 28617637
Nat Ecol Evol. 2017 May 22;1(6):158
pubmed: 28812631
Genetics. 2017 Dec;207(4):1591-1619
pubmed: 29046403
Evol Lett. 2018 Jan 26;2(1):9-21
pubmed: 30283661
PLoS Biol. 2019 Feb 4;17(2):e3000128
pubmed: 30716062
Science. 2019 Mar 22;363(6433):1319-1326
pubmed: 30765607
Evol Lett. 2019 Jan 23;3(1):28-42
pubmed: 30788140
Genetics. 1985 Sep;111(1):165-95
pubmed: 4029610
Proc Natl Acad Sci U S A. 1965 Sep;54(3):731-6
pubmed: 5217452
Genetics. 1969 Apr;61(4):893-903
pubmed: 5364968
Theor Popul Biol. 1984 Apr;25(2):138-93
pubmed: 6729751
Genetics. 1995 Apr;139(4):1805-13
pubmed: 7789779
Genet Res. 1994 Aug;64(1):51-6
pubmed: 7958831
J Theor Biol. 1996 Oct 7;182(3):303-9
pubmed: 8944162