Sono-photo-assisted heterogeneous activation of peroxymonosulfate by Fe/CMK-3 catalyst for the degradation of bisphenol A, optimization with response surface methodology.

Fe-CMK-3 bisphenol A peroxymonosulfate response surface methodology sono-photo-catalytic degradation

Journal

Water environment research : a research publication of the Water Environment Federation
ISSN: 1554-7531
Titre abrégé: Water Environ Res
Pays: United States
ID NLM: 9886167

Informations de publication

Date de publication:
Feb 2020
Historique:
received: 02 06 2019
revised: 03 07 2019
accepted: 05 07 2019
pubmed: 12 7 2019
medline: 25 1 2020
entrez: 12 7 2019
Statut: ppublish

Résumé

The present study examined the removal of bisphenol A (BPA) and total organic carbon (TOC) from aqueous solutions by the Fe/CMK-3 as peroxymonosulfate activator used in the sono-photo-catalytic process. The synthesis of Fe/CMK-3 was carried out using the co-precipitation method, and it was characterized by FTIR, XRD, BET, EDX, and TEM. The results showed that the iron nanoparticles were uniformly embedded in the CMK-3 pores. The effect of factors affecting on the removal of BPA and TOC was evaluated by response surface methodology (RSM) with center composite design (CCD). The analysis of variance of the quadratic model showed that the model is significant (p value < .0001 and R

Identifiants

pubmed: 31295751
doi: 10.1002/wer.1181
doi:

Substances chimiques

Benzhydryl Compounds 0
Peroxides 0
Phenols 0
peroxymonosulfate 22047-43-4
bisphenol A MLT3645I99

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

189-201

Subventions

Organisme : Hamadan University of Medical Sciences
ID : 9610196620

Informations de copyright

© 2019 Water Environment Federation.

Références

Ahmadi, M., & Ghanbari, F. (2018). Combination of UVC-LEDs and ultrasound for peroxymonosulfate activation to degrade synthetic dye: Influence of promotional and inhibitory agents and application for real wastewater. Environmental Science and Pollution Research, 25(6), 6003-6014. https://doi.org/10.1007/s11356-017-0936-8
Ahmadi, M., Ghanbari, F., & Madihi-Bidgoli, S. (2016). Photoperoxi-coagulation using activated carbon fiber cathode as an efficient method for benzotriazole removal from aqueous solutions: Modeling, optimization and mechanism. Journal of Photochemistry and Photobiology A: Chemistry, 322, 85-94. https://doi.org/10.1016/j.jphotochem.2016.02.025
An, H. B., Yu, M. J., Kim, J. M., Jin, M., Jeon, J.-K., Park, S. H., … Park, Y.-K. (2012). Indoor formaldehyde removal over CMK-3. Nanoscale Research Letters, 7(1), 7. https://doi.org/10.1186/1556-276X-7-7
Anipsitakis, G. P., & Dionysiou, D. D. (2004). Radical generation by the interaction of transition metals with common oxidants. Environmental Science and Technology, 38(13), 3705-3712. https://doi.org/10.1021/es035121o
Barzegar, G., Jorfi, S., Zarezade, V., Khatebasreh, M., Mehdipour, F., & Ghanbari, F. (2018). 4-Chlorophenol degradation using ultrasound/peroxymonosulfate/nanoscale zero valent iron: Reusability, identification of degradation intermediates and potential application for real wastewater. Chemosphere, 201, 370-379. https://doi.org/10.1016/j.chemosphere.2018.02.143
Barzoki, H. R., Rahmani, A., Shahamat, Y. D., & Beirami, S. (2018). Adsorption of 2, 4 dinitrophenol from aqueous solutions using ordered mesoporous carbon CMK-3. Journal of Mazandaran University of Medical Sciences, 26(135), 119-129.
Beirami, S., Rahimzadeh Barzoki, H., & Bahramifar, N. (2017). Application of response surface methodology for optimization of trace amount of diazinon preconcentration in natural waters and biological samples by carbon mesoporous CMK-3. Biomedical Chromatography, 31(5), e3874.
Bhatnagar, A., & Anastopoulos, I. (2017). Adsorptive removal of bisphenol A (BPA) from aqueous solution: A review. Chemosphere, 168, 885-902. https://doi.org/10.1016/j.chemosphere.2016.10.121
Cai, C., Zhang, H., Zhong, X., & Hou, L. (2014). Electrochemical enhanced heterogeneous activation of peroxydisulfate by Fe-Co/SBA-15 catalyst for the degradation of Orange II in water. Water Research, 66, 473-485. https://doi.org/10.1016/j.watres.2014.08.039
Cai, C., Zhang, H., Zhong, X., & Hou, L. (2015). Ultrasound enhanced heterogeneous activation of peroxymonosulfate by a bimetallic Fe-Co/SBA-15 catalyst for the degradation of Orange II in water. Journal of Hazardous Materials, 283, 70-79. https://doi.org/10.1016/j.jhazmat.2014.08.053
Cai, C., Zhang, Z., & Zhang, H. (2016). Electro-assisted heterogeneous activation of persulfate by Fe/SBA-15 for the degradation of Orange II. Journal of Hazardous Materials, 313, 209-218. https://doi.org/10.1016/j.jhazmat.2016.04.007
Darsinou, B., Frontistis, Z., Antonopoulou, M., Konstantinou, I., & Mantzavinos, D. (2015). Sono-activated persulfate oxidation of bisphenol A: Kinetics, pathways and the controversial role of temperature. Chemical Engineering Journal, 280, 623-633. https://doi.org/10.1016/j.cej.2015.06.061
Devi, P., Das, U., & Dalai, A. K. (2016). In-situ chemical oxidation: Principle and applications of peroxide and persulfate treatments in wastewater systems. Science of the Total Environment, 571, 643-657. https://doi.org/10.1016/j.scitotenv.2016.07.032
Feizi, R., Ahmad, M., Jorfi, S., & Ghanbari, F. (2019). Sunset yellow degradation by ultrasound/peroxymonosulfate/CuFe 2 O 4: Influential factors and degradation processes. Korean Journal of Chemical Engineering, 36(6), 886-893. https://doi.org/10.1007/s11814-019-0268-0
Ferkous, H., Merouani, S., Hamdaoui, O., & Pétrier, C. (2017). Persulfate-enhanced sonochemical degradation of naphthol blue black in water: Evidence of sulfate radical formation. Ultrasonics Sonochemistry, 34, 580-587. https://doi.org/10.1016/j.ultsonch.2016.06.027
Ghanbari, F., Moradi, M., & Gohari, F. (2016). Degradation of 2,4,6-trichlorophenol in aqueous solutions using peroxymonosulfate/activated carbon/UV process via sulfate and hydroxyl radicals. Journal of Water Process Engineering, 9, 22-28. https://doi.org/10.1016/j.jwpe.2015.11.011
Glaze, W. H., Kang, J.-W., & Chapin, D. H.. (1987). The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone: Science & Engineering, 9(4), 335-352. https://doi.org/10.1080/01919518708552148
Guan, Y.-H., Ma, J., Li, X.-C., Fang, J.-Y., & Chen, L.-W. (2011). Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system. Environmental Science and Technology, 45(21), 9308-9314. https://doi.org/10.1021/es2017363
Huwe, H., & Frِba, M. (2007). Synthesis and characterization of transition metal and metal oxide nanoparticles inside mesoporous carbon CMK-3. Carbon, 45(2), 304-314. https://doi.org/10.1016/j.carbon.2006.09.021
Jorfi, S., Pourfadakari, S., & Kakavandi, B. (2018). A new approach in sono-photocatalytic degradation of recalcitrant textile wastewater using MgO@ Zeolite nanostructure under UVA irradiation. Chemical Engineering Journal, 343, 95-107. https://doi.org/10.1016/j.cej.2018.02.067
Jun, S., Joo, S. H., Ryoo, R., Kruk, M., Jaroniec, M., Liu, Z., … Terasaki, O. (2000). Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. Journal of the American Chemical Society, 122(43), 10712-10713. https://doi.org/10.1021/ja002261e
Kaith, B. S., Shanker, U., Gupta, B., & Bhatia, J. K. (2018). RSM-CCD optimized In-air synthesis of photocatalytic nanocomposite: Application in removal-degradation of toxic brilliant blue. Reactive & Functional Polymers, 131, 107-122. https://doi.org/10.1016/j.reactfunctpolym.2018.07.016
Kang, S. W., Kim, K., Chun, D. H., Yang, J.-I., Lee, H.-T., Jung, H., … Park, J. C. (2017). High-performance Fe5C2@ CMK-3 nanocatalyst for selective and high-yield production of gasoline-range hydrocarbons. Journal of Catalysis, 349, 66-74. https://doi.org/10.1016/j.jcat.2017.03.004
Khataee, A. R., Zarei, M., & Khataee, A. R. (2011). Electrochemical treatment of dye solution by oxalate catalyzed photoelectro-fenton process using a carbon nanotube-PTFE cathode: Optimization by central composite design. CLEAN - Soil, Air, Water, 39(5), 482-490. https://doi.org/10.1002/clen.201000120
Kurukutla, A. B., Kumar, P. S. S., Anandan, S., & Sivasankar, T. (2015). Sonochemical degradation of rhodamine b using oxidants, hydrogen peroxide/peroxydisulfate/peroxymonosulfate, with Fe2+ ion: Proposed pathway and kinetics. Environmental Engineering Science, 32(2), 129-140.
Li, H., Li, Y., Xiang, L., Huang, Q., Qiu, J., Zhang, H., … Valange, S. (2015). Heterogeneous photo-Fenton decolorization of Orange II over Al-pillared Fe-smectite: Response surface approach, degradation pathway, and toxicity evaluation. Journal of Hazardous Materials, 287, 32-41. https://doi.org/10.1016/j.jhazmat.2015.01.023
Lirong, M., Jianjun, S., Ming, Z., & Jie, H. (2014). Synthesis of magnetic sonophotocatalyst and its enhanced biodegradability of organophosphate pesticide. Bulletin of the Korean Chemical Society, 35(12), 3521-3526. https://doi.org/10.5012/bkcs.2014.35.12.3521
Liu, J., Zhou, J., Ding, Z., Zhao, Z., Xu, X., & Fang, Z. (2017). Ultrasound irritation enhanced heterogeneous activation of peroxymonosulfate with Fe3O4 for degradation of azo dye. Ultrasonics Sonochemistry, 34, 953-959. https://doi.org/10.1016/j.ultsonch.2016.08.005
Neppolian, B., Ciceri, L., Bianchi, C. L., Grieser, F., & Ashokkumar, M. (2011). Sonophotocatalytic degradation of 4-chlorophenol using Bi2O3/TiZrO4 as a visible light responsive photocatalyst. Ultrasonics Sonochemistry, 18(1), 135-139. https://doi.org/10.1016/j.ultsonch.2010.04.002
Nidheesh, P. V., Gandhimathi, R., Velmathi, S., & Sanjini, N. S. (2014). Magnetite as a heterogeneous electro Fenton catalyst for the removal of Rhodamine B from aqueous solution. RSC Advances, 4(11), 5698-5708. https://doi.org/10.1039/c3ra46969g
Okitsu, K., Iwasaki, K., Yobiko, Y., Bandow, H., Nishimura, R., & Maeda, Y. (2005). Sonochemical degradation of azo dyes in aqueous solution: A new heterogeneous kinetics model taking into account the local concentration of OH radicals and azo dyes. Ultrasonics Sonochemistry, 12(4), 255-262. https://doi.org/10.1016/j.ultsonch.2004.01.038
Oppenländer, T. (2007). Photochemical purification of water and air: Advanced oxidation processes (AOPs)-principles, reaction mechanisms, reactor concepts. Hoboken, NJ: John Wiley & Sons.
Panda, D., & Manickam, S. (2017). Recent advancements in the sonophotocatalysis (SPC) and doped-sonophotocatalysis (DSPC) for the treatment of recalcitrant hazardous organic water pollutants. Ultrasonics Sonochemistry, 36, 481-496. https://doi.org/10.1016/j.ultsonch.2016.12.022
Pang, Y., Ruan, Y., Feng, Y., Diao, Z., Shih, K., Hou, Li'an, … Kong, L. (2019). Ultrasound assisted zero valent iron corrosion for peroxymonosulfate activation for Rhodamine-B degradation. Chemosphere, 228, 412-417. https://doi.org/10.1016/j.chemosphere.2019.04.164
Park, I.-S., Choi, S. Y., & Ha, J. S. (2008). High-performance titanium dioxide photocatalyst on ordered mesoporous carbon support. Chemical Physics Letters, 456(4-6), 198-201. https://doi.org/10.1016/j.cplett.2008.03.026
Pourzamani, H., Hajizadeh, Y., & Mengelizadeh, N. (2018). Application of three-dimensional electrofenton process using MWCNTs-Fe3O4 nanocomposite for removal of diclofenac. Process Safety and Environmental Protection, 119, 271-284. https://doi.org/10.1016/j.psep.2018.08.014
Rahmani, A., Rahimzadeh, H., & Beirami, S. (2019). Photocatalytic degradation of phenolic compound (Phenol, resorcinol and cresol) by titanium dioxide photocatalyst on ordered mesoporous carbon (CMK-3) support under UV irradiation. Desalination and Water Treatment, 144, 224-232. https://doi.org/10.5004/dwt.2019.23673
Rahmani, A. R., Rezaeivahidian, H., Almasi, M., Shabanlo, A., & Almasi, H. (2016). A comparative study on the removal of phenol from aqueous solutions by electro-Fenton and electro-persulfate processes using iron electrodes. Research on Chemical Intermediates, 42(2), 1441-1450. https://doi.org/10.1007/s11164-015-2095-1
Rahmani, A. R., Shabanloo, A., Fazlzadeh, M., Poureshgh, Y., & Vanaeitabar, M. (2019). Optimization of sonochemical decomposition of ciprofloxacin antibiotic in US/PS/nZVI process by CCD-RSM method. Desalination and Water Treatment, 145, 300-308. https://doi.org/10.5004/dwt.2019.23656
Ranjit, N., Siefert, K., & Padmanabhan, V. (2010). Bisphenol-A and disparities in birth outcomes: A review and directions for future research. Journal of Perinatology, 30(1), 2-9. https://doi.org/10.1038/jp.2009.90
Rousselle, C., Ormsby, J. N., Schaefer, B., Lampen, A., Platzek, T., Hirsch-Ernst, K., … Emond, C. (2013). Meeting report: International workshop on endocrine disruptors: Exposure and potential impact on consumers health. Regulatory Toxicology and Pharmacology, 65(1), 7-11. https://doi.org/10.1016/j.yrtph.2012.11.010
Shah, J., Jan, M. R., & Khitab, F. (2018). Sonophotocatalytic degradation of textile dyes over Cu impregnated ZnO catalyst in aqueous solution. Process Safety and Environmental Protection, 116, 149-158. https://doi.org/10.1016/j.psep.2018.01.008
Shi, P., Su, R., Zhu, S., Zhu, M., Li, D., & Xu, S. (2012). Supported cobalt oxide on graphene oxide: Highly efficient catalysts for the removal of Orange II from water. Journal of Hazardous Materials, 229, 331-339. https://doi.org/10.1016/j.jhazmat.2012.06.007
Shokoohi, R., Gillani, R. A., Mahmoudi, M. M., & Dargahi, A. (2018). Investigation of the efficiency of heterogeneous Fenton-like process using modified magnetic nanoparticles with sodium alginate in removing Bisphenol A from aquatic environments: Kinetic studies. Desalination and Water Treatment, 101, 185-192. https://doi.org/10.5004/dwt.2018.21736
Sunasee, S., Leong, K. H., Wong, K. T., Lee, G., Pichiah, S., Nah, I., & Jang, M. (2019). Sonophotocatalytic degradation of bisphenol A and its intermediates with graphitic carbon nitride. Environmental Science and Pollution Research, 262, 1082-1093.
Tabasideh, S., Maleki, A., Shahmoradi, B., Ghahremani, E., & McKay, G. (2017). Sonophotocatalytic degradation of diazinon in aqueous solution using iron-doped TiO2 nanoparticles. Separation and Purification Technology, 189, 186-192. https://doi.org/10.1016/j.seppur.2017.07.065
Takdastan, A., Kakavandi, B., Azizi, M., & Golshan, M. (2018). Efficient activation of peroxymonosulfate by using ferroferric oxide supported on carbon/UV/US system: A new approach into catalytic degradation of bisphenol A. Chemical Engineering Journal, 331, 729-743. https://doi.org/10.1016/j.cej.2017.09.021
Talebian, N., Nilforoushan, M. R., & Mogaddas, F. J. (2013). Comparative study on the sonophotocatalytic degradation of hazardous waste. Ceramics International, 39(5), 4913-4921. https://doi.org/10.1016/j.ceramint.2012.11.085
Tan, C., Gao, N., Deng, Y., Deng, J., Zhou, S., Li, J., & Xin, X. (2014). Radical induced degradation of acetaminophen with Fe3O4 magnetic nanoparticles as heterogeneous activator of peroxymonosulfate. Journal of Hazardous Materials, 276, 452-460. https://doi.org/10.1016/j.jhazmat.2014.05.068
Tang, L., Yang, G.-D., Zeng, G.-M., Cai, Y. E., Li, S.-S., Zhou, Y.-Y., … Luna, B. (2014). Synergistic effect of iron doped ordered mesoporous carbon on adsorption-coupled reduction of hexavalent chromium and the relative mechanism study. Chemical Engineering Journal, 239, 114-122. https://doi.org/10.1016/j.cej.2013.10.104
Wagner, M., & Oehlmann, J. (2009). Endocrine disruptors in bottled mineral water: Total estrogenic burden and migration from plastic bottles. Environmental Science and Pollution Research, 16(3), 278-286. https://doi.org/10.1007/s11356-009-0107-7
Waldemer, R. H., Tratnyek, P. G., Johnson, R. L., & Nurmi, J. T. (2007). Oxidation of chlorinated ethenes by heat-activated persulfate: Kinetics and products. Environmental Science and Technology, 41(3), 1010-1015.
Wang, J., Zhou, H., Zhuang, J., & Liu, Q. (2015). Magnetic γ-Fe 2 O 3, Fe 3 O 4, and Fe nanoparticles confined within ordered mesoporous carbons as efficient microwave absorbers. Physical Chemistry Chemical Physics, 17(5), 3802-3812.
Xiong, X., Sun, B., Zhang, J., Gao, N., Shen, J., Li, J., & Guan, X. (2014). Activating persulfate by Fe 0 coupling with weak magnetic field: Performance and mechanism. Water Research, 62, 53-62. https://doi.org/10.1016/j.watres.2014.05.042
Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G. H., Chmelka, B. F., & Stucky, G. D. (1998). Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 279(5350), 548-552.

Auteurs

Hadi Rahimzadeh (H)

Department of Environmental Health Engineering, Faculty of Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran.

Alireza Rahmani (A)

Department of Environmental Health Engineering, Faculty of Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran.

Mohammad-Taghi Samadi (MT)

Department of Environmental Health Engineering, Faculty of Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran.

Abbas Farmany (A)

Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.

Ghorban Asgari (G)

Department of Environmental Health Engineering, Faculty of Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran.

Articles similaires

Benzhydryl Compounds Humans Glucosides Heart Failure Malaysia
Sorghum Antioxidants Phosphorus Fertilizers Flavonoids
Humans Plant Extracts Antioxidants Apoptosis Cell Line, Tumor
Microwaves Tea Machine Learning Phenols Plant Extracts

Classifications MeSH