Colloidal Gold Nanorings and Their Plasmon Coupling with Gold Nanospheres.
Fano resonance
gold nanorings
gold nanospheres
heterodimers
plasmon coupling
Journal
Small (Weinheim an der Bergstrasse, Germany)
ISSN: 1613-6829
Titre abrégé: Small
Pays: Germany
ID NLM: 101235338
Informations de publication
Date de publication:
Aug 2019
Aug 2019
Historique:
received:
21
05
2019
revised:
20
06
2019
pubmed:
16
7
2019
medline:
16
7
2019
entrez:
16
7
2019
Statut:
ppublish
Résumé
Gold nanorings are attractive as plasmonic metal nanocrystals because they have a hollow inner cavity. Their enhanced electric field inside the ring cavity is accessible, which is highly desirable for assembling with other optical components and studying their plasmon-coupling behaviors. However, the lack of robust methods for synthesizing size-controllable and uniform Au nanorings severely impedes the study of their attractive plasmonic properties and plasmon-driven applications. Herein, an improved wet-chemistry method is reported for the synthesis of monodisperse colloidal Au nanorings. Using circular Au nanodisks with different thicknesses and diameters as templates, Au nanorings are synthesized with thicknesses varied from ≈30 to ≈50 nm and cavity sizes varied from ≈90 to ≈40 nm. The produced Au nanorings are assembled with colloidal Au nanospheres to yield Au nanoring-nanosphere heterodimers in sphere-in-ring and sphere-on-ring configurations on substrates. The sphere-in-ring heterodimers exhibit the interesting feature of plasmonic Fano resonance upon the excitation of the dark quadrupolar plasmon mode of the Au nanorings. The open cavity in a nanoring holds a great promise for studying plasmon-coupled systems, which will facilitate the construction of advanced metamaterials and high-performance Fano-based devices.
Identifiants
pubmed: 31304668
doi: 10.1002/smll.201902608
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e1902608Subventions
Organisme : Hong Kong Research Grants Council
ID : 14306817
Organisme : Chinese University of Hong Kong
ID : 4053350
Informations de copyright
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Références
K. M. Mayer, J. H. Hafner, Chem. Rev. 2011, 111, 3828.
L. Dykman, N. Khlebtsov, Chem. Soc. Rev. 2012, 41, 2256.
S. Linic, P. Christopher, D. B. Ingram, Nat. Mater. 2011, 10, 911.
R. B. Jiang, B. X. Li, C. H. Fang, J. F. Wang, Adv. Mater. 2014, 26, 5274.
H. A. Atwater, A. Polman, Nat. Mater. 2010, 9, 205.
O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, N. J. Halas, ACS Nano 2013, 7, 42.
S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, N. J. Halas, Chem. Soc. Rev. 2008, 37, 898.
P. Zijlstra, M. Orrit, Rep. Prog. Phys. 2011, 74, 106401.
L. Novotny, N. van Hulst, Nat. Photonics 2011, 5, 83.
V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, S. A. Maier, Chem. Rev. 2011, 111, 3888.
A. R. Tao, S. Habas, P. D. Yang, Small 2008, 4, 310.
S. J. Tan, M. J. Campolongo, D. Luo, W. L. Cheng, Nat. Nanotechnol. 2011, 6, 268.
J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, F. J. G. de Abajo, Phys. Rev. Lett. 2003, 90, 057401.
S. Schelm, G. B. Smith, J. Phys. Chem. B 2005, 109, 1689.
Y. Hu, T. M. Chou, H. J. Wang, H. Du, J. Phys. Chem. C 2014, 118, 16011.
J. Ye, J. A. Hutchison, H. Uji-i, J. Hofkens, L. Lagae, G. Maes, G. Borghs, P. Van Dorpe, Nanoscale 2012, 4, 1606.
E. M. Larsson, J. Alegret, M. Käll, D. S. Sutherland, Nano Lett. 2007, 7, 1256.
Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, S. A. Maier, ACS Nano 2010, 4, 1664.
T. G. Habteyes, S. Dhuey, S. Cabrini, P. J. Schuck, S. R. Leone, Nano Lett. 2011, 11, 1819.
S. Kim, J.-M. Jung, D.-G. Choi, H.-T. Jung, S.-M. Yang, Langmuir 2006, 22, 7109.
A. Rakovich, P. Albella, S. A. Maier, ACS Nano 2015, 9, 2648.
N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, S. A. Maier, Nano Lett. 2009, 9, 1663.
M. G. Banaee, K. B. Crozier, Opt. Lett. 2010, 35, 760.
C.-Y. Tsai, J.-W. Lin, C.-Y. Wu, P.-T. Lin, T.-W. Lu, P.-T. Lee, Nano Lett. 2012, 12, 1648.
R. Near, C. Tabor, J. Duan, R. Pachter, M. El-Sayed, Nano Lett. 2012, 12, 2158.
M. Lorente-Crespo, L. Wang, R. Ortuño, C. García-Meca, Y. Ekinci, A. Martínez, Nano Lett. 2013, 13, 2654.
F. Hao, E. M. Larrson, T. A. Ali, D. S. Sutherland, P. Nordlander, Chem. Phys. Lett. 2008, 458, 262.
K. Lodewijks, W. V. Roy, G. Borghs, L. Lagae, P. Van Dorpe, Nano Lett. 2012, 12, 1655.
Y. J. Cai, Y. Li, P. Nordlander, P. S. Cremer, Nano Lett. 2012, 12, 4881.
A. R. Halpern, R. M. Corn, ACS Nano 2013, 7, 1755.
C. L. Du, W. Cai, Y. X. Xiang, L. Wang, M. X. Ren, X. Z. Zhang, J. J. Xu, Sci. Rep. 2017, 7, 1402.
A. H. Thilsted, J. Y. Pan, K. Y. Wu, K. Zór, T. Rindzevicius, M. S. Schmidt, A. Boisen, Small 2016, 12, 6745.
L. Shao, Y. T. Tao, Q. F. Ruan, J. F. Wang, H.-Q. Lin, Phys. Chem. Chem. Phys. 2015, 17, 10861.
M. Bosman, L. Zhang, H. G. Duan, S. F. Tan, C. A. Nijhuis, C.-W. Qiu, J. K. W. Yang, Sci. Rep. 2015, 4, 5537.
T. Siegfried, Y. Ekinci, O. J. F. Martin, H. Sigg, ACS Nano 2013, 7, 2751.
E. Roduner, Chem. Soc. Rev. 2006, 35, 583.
Y. G. Sun, Y. N. Xia, Adv. Mater. 2003, 15, 695.
L. P. Jiang, S. Xu, J.-M. Zhu, J.-R. Zhang, J.-J. Zhu, H.-Y. Chen, Inorg. Chem. 2004, 43, 5877.
M. M. Shahjamali, M. Bosman, S. W. Cao, X. Huang, X. H. Cao, H. Zhang, S. S. Pramana, C. Xue, Small 2013, 9, 2880.
W. X. Wang, Y. C. Yan, N. Zhou, H. Zhang, D. S. Li, D. R. Yang, Nanoscale 2016, 8, 3704.
X. Y. Lin, Y. Liu, M. H. Lin, Q. Zhang, Z. H. Nie, Chem. Commun. 2017, 53, 10765.
H.-J. Jang, S. Ham, J. A. I. Acapulco Jr., Y. Song, S. Hong, K. L. Shuford, S. Park, J. Am. Chem. Soc. 2014, 136, 17674.
H. Wang, Y. P. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, N. J. Halas, Proc. Natl. Acad. Sci. USA 2006, 103, 10856.
B. Luk'yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, Nat. Mater. 2010, 9, 707.
F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, P. Nordlander, Nano Lett. 2008, 8, 3983.
N. A. Mirin, K. Bao, P. Nordlander, J. Phys. Chem. A 2009, 113, 4028.
J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. G. Han, W. L. Zhang, Nat. Commun. 2012, 3, 1151.
J. Marangos, Nature 1999, 397, 559.
L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi, Nature 1999, 397, 594.
F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, ACS Nano 2009, 3, 643.
F. Qin, T. Zhao, R. B. Jiang, N. N. Jiang, Q. F. Ruan, J. F. Wang, L.-D. Sun, C.-H. Yan, H.-Q. Lin, Adv. Opt. Mater. 2016, 4, 76.
X. M. Cui, F. Qin, Q. R. Ruan, X. L. Zhuo, J. F. Wang, Adv. Funct. Mater. 2018, 28, 1705516.
H.-J. Jang, S. Hong, S. Park, J. Mater. Chem. 2012, 22, 19792.
H.-J. Jang, S. Hong, S. Ham, K. L. Shuford, S. Park, Nanoscale 2014, 6, 7339.
X. Z. Zhu, H. K. Yip, X. L. Zhuo, R. B. Jiang, J. L. Chen, X.-M. Zhu, Z. Yang, J. F. Wang, J. Am. Chem. Soc. 2017, 139, 13837.
I. Zorić, M. Zäch, B. Kasemo, C. Langhammer, ACS Nano 2011, 5, 2535.
Q. F. Ruan, L. Shao, Y. W. Shu, J. F. Wang, H. K. Wu, Adv. Opt. Mater. 2014, 2, 65.
C. H. Fang, H. L. Jia, S. Chang, Q. F. Ruan, P. Wang, T. Chen, J. F. Wang, Energy Environ. Sci. 2014, 7, 3431.
P. Nordlander, C. Oubre, E. Prodan, K. Li, M. I. Stockman, Nano Lett. 2004, 4, 899.
J. Zuloaga, E. Prodan, P. Nordlander, Nano Lett. 2009, 9, 887.
F. Qin, Y. H. Lai, J. H. Yang, X. M. Cui, H. G. Ma, J. F. Wang, H.-Q. Lin, Nanoscale 2017, 9, 13222.
H. J. Chen, L. Shao, T. Ming, K. C. Woo, Y. C. Man, J. F. Wang, H.-Q. Lin, ACS Nano 2011, 5, 6754.
S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, N. J. Halas, Nano Lett. 2010, 10, 2694.
F. Qin, X. M. Cui, Q. F. Ruan, Y. H. Lai, J. F. Wang, H. G. Ma, H.-Q. Lin, Nanoscale 2016, 8, 17645.
E. Martinsson, M. M. Shahjamali, N. Large, N. Zaraee, Y. Zhou, G. C. Schatz, C. A. Mirkin, D. Aili, Small 2016, 12, 330.
E. Martinsson, M. A. Otte, M. M. Shahjamali, B. Sepulveda, D. Aili, J. Phys. Chem. C 2014, 118, 24680.
E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, Science 2003, 302, 419.