Reference-based sensitivity analysis for time-to-event data.


Journal

Pharmaceutical statistics
ISSN: 1539-1612
Titre abrégé: Pharm Stat
Pays: England
ID NLM: 101201192

Informations de publication

Date de publication:
11 2019
Historique:
received: 27 04 2018
revised: 01 05 2019
accepted: 07 05 2019
pubmed: 17 7 2019
medline: 25 7 2020
entrez: 17 7 2019
Statut: ppublish

Résumé

The analysis of time-to-event data typically makes the censoring at random assumption, ie, that-conditional on covariates in the model-the distribution of event times is the same, whether they are observed or unobserved (ie, right censored). When patients who remain in follow-up stay on their assigned treatment, then analysis under this assumption broadly addresses the de jure, or "while on treatment strategy" estimand. In such cases, we may well wish to explore the robustness of our inference to more pragmatic, de facto or "treatment policy strategy," assumptions about the behaviour of patients post-censoring. This is particularly the case when censoring occurs because patients change, or revert, to the usual (ie, reference) standard of care. Recent work has shown how such questions can be addressed for trials with continuous outcome data and longitudinal follow-up, using reference-based multiple imputation. For example, patients in the active arm may have their missing data imputed assuming they reverted to the control (ie, reference) intervention on withdrawal. Reference-based imputation has two advantages: (a) it avoids the user specifying numerous parameters describing the distribution of patients' postwithdrawal data and (b) it is, to a good approximation, information anchored, so that the proportion of information lost due to missing data under the primary analysis is held constant across the sensitivity analyses. In this article, we build on recent work in the survival context, proposing a class of reference-based assumptions appropriate for time-to-event data. We report a simulation study exploring the extent to which the multiple imputation estimator (using Rubin's variance formula) is information anchored in this setting and then illustrate the approach by reanalysing data from a randomized trial, which compared medical therapy with angioplasty for patients presenting with angina.

Identifiants

pubmed: 31309730
doi: 10.1002/pst.1954
pmc: PMC6899641
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

645-658

Subventions

Organisme : Medical Research Council
ID : MC_UU_12023/21
Pays : United Kingdom

Informations de copyright

© 2019 The Authors. Pharmaceutical Statistics published by John Wiley & Sons Ltd.

Références

JAMA. 2018 Jan 9;319(2):130-142
pubmed: 29318278
J Biopharm Stat. 2013;23(6):1352-71
pubmed: 24138436
Pharm Stat. 2019 Nov;18(6):645-658
pubmed: 31309730
J Biopharm Stat. 2014;24(6):1363-9
pubmed: 25215553
Biometrics. 2004 Sep;60(3):704-14
pubmed: 15339293
J Child Psychol Psychiatry. 2015 Dec;56(12):1298-313
pubmed: 26123832
Clin Trials. 2017 Aug;14(4):357-367
pubmed: 28675302
Stat Med. 2002 Aug 15;21(15):2175-97
pubmed: 12210632
Pharm Stat. 2017 Jan;16(1):29-36
pubmed: 27492760
Stat Med. 2008 Dec 10;27(28):5861-79
pubmed: 18759370
Pharm Stat. 2017 Nov;16(6):424-432
pubmed: 28834175
Stat Med. 2018 Apr 30;37(9):1467-1481
pubmed: 29333672
J Am Coll Cardiol. 2003 Oct 1;42(7):1161-70
pubmed: 14522473
Stat Med. 2014 Nov 30;33(27):4681-94
pubmed: 25060703
JAMA Psychiatry. 2015 Dec;72(12):1199-210
pubmed: 26536057
Stat Med. 2011 Feb 20;30(4):356-67
pubmed: 21225898
Biostatistics. 2012 Apr;13(2):341-54
pubmed: 22223746
J Biopharm Stat. 2014;24(2):229-53
pubmed: 24605967
Pharm Stat. 2014 Jul-Aug;13(4):258-64
pubmed: 24931317
BMC Med Res Methodol. 2013 Dec 07;13:152
pubmed: 24314264
Stat Med. 2011 Aug 30;30(19):2409-21
pubmed: 21611958
Stat Med. 2018 Nov 10;37(25):3661-3678
pubmed: 30014575
Biometrics. 2001 Jun;57(2):404-13
pubmed: 11414563
Stat Med. 1997 Mar 30;16(6):611-26
pubmed: 9131751
Am J Epidemiol. 2016 Apr 15;183(8):758-64
pubmed: 26994063
Biometrics. 2002 Sep;58(3):510-20
pubmed: 12229985
Stat Med. 2005 Jan 15;24(1):65-82
pubmed: 15523706
Biostatistics. 2005 Jan;6(1):77-91
pubmed: 15618529
J R Stat Soc Ser A Stat Soc. 2019 Feb;182(2):623-645
pubmed: 30828138
Diabetes Care. 2018 May;41(5):1009-1016
pubmed: 29483185
Stat Med. 2010 Dec 20;29(29):3017-29
pubmed: 20960582
Stat Med. 2005 Jun 15;24(11):1713-23
pubmed: 15724232
Pharm Stat. 2016 May;15(3):216-29
pubmed: 26997353
Lancet. 1997 Aug 16;350(9076):461-8
pubmed: 9274581

Auteurs

Andrew Atkinson (A)

Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK.
Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland.

Michael G Kenward (MG)

Ashkirk, Scotland, UK.

Tim Clayton (T)

Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK.

James R Carpenter (JR)

Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK.
MRC Clinical Trials Unit, University College London, London, UK.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH