Spatial trophic cascades in communities connected by dispersal and foraging.

dispersal foraging indirect effects interaction networks metacommunity spatial cascades trophic cascades

Journal

Ecology
ISSN: 1939-9170
Titre abrégé: Ecology
Pays: United States
ID NLM: 0043541

Informations de publication

Date de publication:
11 2019
Historique:
received: 12 12 2018
revised: 23 04 2019
accepted: 17 06 2019
pubmed: 18 7 2019
medline: 18 12 2019
entrez: 18 7 2019
Statut: ppublish

Résumé

Pairwise interactions between species have both direct and indirect consequences that reverberate throughout the whole ecosystem. In particular, interaction effects may propagate in a spatial dimension, to localities connected by organismal movement. Here we study the propagation of interaction effects with a spatially explicit metacommunity model, where local sites are connected by dispersal, foraging, or by both types of movement. We show that indirect pairwise effects are, in most cases, of the same sign as direct effects if localities are connected by dispersing species. However, if foraging is prevalent, this correspondence is broken, and indirect effects between species often have a different sign than direct effects. This highlights the importance of indirect interactions across space and their inherent unpredictability in complex settings with species foraging across local patches. Further, the effect of a species over another in a local patch does not necessarily correspond to its effect at the metacommunity scale; this correspondence is again mediated by the type of movement across localities. Every species, despite their trophic position or spatial range, displays a non-zero net effect over every other species in our model metacommunities. Thus we show that local dynamics and local interactions between species can trigger indirect effects all across the set of connected patches, and these effects have a distinct signature depending on whether the prevalent connection between patches is via dispersal or via foraging. However, the magnitude of this effect between any two species strongly decays with the distance between them. These theoretical results strengthen the importance of considering indirect effects across species at both the community and metacommunity levels, highlight the differences between types of movement across locations, and thus open novel avenues for the study of interaction effects in spatially explicit settings.

Identifiants

pubmed: 31314929
doi: 10.1002/ecy.2820
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e02820

Subventions

Organisme : Spanish Ministry of Education
ID : 13/02147
Pays : International

Informations de copyright

© 2019 by the Ecological Society of America.

Références

Abrams, P. A. 1987. On classifying interactions between populations. Oecologia 73:272-281.
Abrams, P. A. 1992. Predators that benefit prey and prey that harm predators: unusual effects of interacting foraging adaptation. American Naturalist 140:573-600.
Alerstam, T., and J. Bäckman. 2018. Ecology of animal migration. Current Biology 28:R968-R972.
Amarasekare, P. 2008. Spatial dynamics of foodwebs. Annual Review of Ecology, Evolution, and Systematics 39:479-500.
Balcan, D., V. Colizza, B. Gonçalves, H. Hu, J. J. Ramasco, and A. Vespignani. 2009. Multiscale mobility networks and the spatial spreading of infectious diseases. Proceedings of the National Academy of Sciences 106:21484-21489.
Barbosa, M., G. W. Fernandes, O. T. Lewis, and R. J. Morris. 2017. Experimentally reducing species abundance indirectly affects food web structure and robustness. Journal of Animal Ecology 86:327-336.
Barthélemy, M. 2011. Spatial networks. Physics Reports 499:1-101.
Bender, E. A., T. J. Case, and M. E. Gilpin. 1984. Perturbation experiments in community ecology: theory and practice. Ecology 65:1-13.
Berlow, E. L., et al. 2004. Interaction strengths in food webs: issues and opportunities. Journal of Animal Ecology 73:585-598.
Casini, M., T. Blenckner, C. Möllmann, A. Gårdmark, M. Lindegren, M. Llope, G. Kornilovs, M. Plikshs, and N. C. Stenseth. 2012. Predator transitory spillover induces trophic cascades in ecological sinks. Proceedings of the National Academy of Sciences 109:8185-8189.
Chalfoun, A. D., F. R. Thompson, and M. J. Ratnaswamy. 2002. Nest predators and fragmentation: a review and meta-analysis. Conservation Biology 16:306-318.
Csardi, G., and T. Nepusz. 2006. The Igraph software package for complex network research. InterJournal Complex Systems:1695.
Estes, J. A., M. T. Tinker, T. M. Williams, and D. F. Doak. 1998. Killer Whale predation on sea otters linking oceanic and nearshore ecosystems. Science 282:473-476.
Gounand, I., E. Harvey, C. J. Little, and F. Altermatt. 2018. Meta-ecosystems 2.0: rooting the theory into the field. Trends in Ecology and Evolution 33:36-46.
Gravel, D., F. Guichard, M. Loreau, and N. Mouquet. 2010. Source and sink dynamics in meta-ecosystems. Ecology 91:2172-2184.
Gravel, D., F. Massol, and M. A. Leibold. 2016. Stability and complexity in model meta-ecosystems. Nature communications 7:12457.
Helfield, J. M., and R. J. Naiman. 2006. Keystone interactions: salmon and bear in riparian forests of Alaska. Ecosystems 9:167-180.
Jacquet, C., D. Mouillot, M. Kulbicki, and D. Gravel. 2017. Extensions of island biogeography theory predict the scaling of functional trait composition with habitat area and isolation. Ecology Letters 20:135-146.
Knight, T. M., M. W. McCoy, J. M. Chase, K. A. McCoy, and R. D. Holt. 2005. Trophic cascades across ecosystems. Nature 437:nature03962.
Leibold, M. A., and J. M. Chase. 2018. Metacommunity ecology. Number 59 in Monographs in population biology. Princeton University Press, Princeton, New Jersey, USA.
Leibold, M. A., et al. 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7:601-613.
Levi, T., C. T. Darimont, M. MacDuffee, M. Mangel, P. Paquet, and C. C. Wilmers. 2012. Using grizzly bears to assess harvest-ecosystem tradeoffs in salmon fisheries. PLOS Biology 10:e1001303.
Loreau, M., N. Mouquet, and R. D. Holt. 2003. Meta-ecosystems: a theoretical framework for a spatial ecosystem ecology. Ecology Letters 6:673-679.
Massol, F., D. Gravel, N. Mouquet, M. W. Cadotte, T. Fukami, and M. A. Leibold. 2011. Linking community and ecosystem dynamics through spatial ecology. Ecology Letters 14:313-323.
Mayfield, M. M., and D. B. Stouffer. 2017. Higher-order interactions capture unexplained complexity in diverse communities. Nature Ecology and Evolution 1:0062.
McCann, K. S., J. B. Rasmussen, and J. Umbanhowar. 2005. The dynamics of spatially coupled food webs. Ecology Letters 8:513-523.
Menge, B. A. 1995. Indirect effects in marine rocky intertidal interaction webs: patterns and importance. Ecological Monographs 65:21-74.
Montoya, J. M., G. Woodward, M. C. Emmerson, and R. V. Solé. 2009. Press perturbations and indirect effects in real food webs. Ecology 90:2426-2433.
Moya-Laraño, J., and D. H. Wise. 2007. Direct and indirect effects of ants on a forest-floor food web. Ecology 88:1454-1465.
Naiman, R. J., R. E. Bilby, D. E. Schindler, and J. M. Helfield. 2002. Pacific salmon, nutrients, and the dynamics of freshwater and riparian ecosystems. Ecosystems 5:399-417.
Newman, M. E. J. 2006. Modularity and community structure in networks. Proceedings of the National Academy of Sciences 103:8577-8582.
Novak, M., J. D. Yeakel, A. E. Noble, D. F. Doak, M. Emmerson, J. A. Estes, U. Jacob, M. T. Tinker, and J. T. Wootton. 2016. Characterizing species interactions to understand press perturbations: What is the community matrix? Annual Review of Ecology, Evolution, and Systematics 47:409-432.
Orians, G. H., and N. E. Pearson. 1979. On the theory of “central place foraging”. Pages 155-177. in J. Horn, G. R. Stairs, and R. D. Mitchell, editors. Analysis of ecological systems. Ohio State Press, Columbus, Ohio, USA
Peacor, S. D., and E. E. Werner. 1997. Trait-mediated indirect interactions in a simple aquatic food web. Ecology 78:1146-1156.
Polis, G. A. 1994. Food webs, trophic cascades and community structure. Australian Journal of Ecology 19:121-136.
Polis, G. A., W. B. Anderson, and R. D. Holt. 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics 28:289-316.
R Development Core Team. 2018. R: a language and environment for statistical computing, Vienna, Austria. www.r-project.net.
Schmitz, O. J., P. A. Hambäck, and A. P. Beckerman. 2000. Trophic cascades in terrestrial systems: a review of the effects of carnivore removals on plants. American Naturalist 155:141-153.
Springer, A. M., G. B. van Vliet, N. Bool, M. Crowley, P. Fullagar, M.-A. Lea, R. Monash, C. Price, C. Vertigan, and E. J. Woehler. 2018. Transhemispheric ecosystem disservices of pink salmon in a Pacific Ocean macrosystem. Proceedings of the National Academy of Sciences 115:E5038-E5045.
Trussell, G. C., C. M. Matassa, and P. J. Ewanchuk. 2017. Moving beyond linear food chains: trait-mediated indirect interactions in a rocky intertidal food web. Proceedings of the Royal Society B: Biological Sciences 284:20162590.
White, J. W., A. Rassweiler, J. F. Samhouri, A. C. Stier, and C. White. 2014. Ecologists should not use statistical significance tests to interpret simulation model results. Oikos 123:385-388.
Williams, R. J., and N. D. Martinez. 2000. Simple rules yield complex food webs. Nature 404:180-183.
Williams, R. J., E. L. Berlow, J. A. Dunne, A.-L. Barabási, and N. D. Martinez. 2002. Two degrees of separation in complex food webs. Proceedings of the National Academy of Sciences 99:12913-12916.
Wootton, J. T. 2002. Indirect effects in complex ecosystems: recent progress and future challenges. Journal of Sea Research 48:157-172.
Zhao, L., H. Zhang, E. J. O'Gorman, W. Tian, A. Ma, J. C. Moore, S. R. Borrett, and G. Woodward. 2016. Weighting and indirect effects identify keystone species in food webs. Ecology Letters 19:1032-1040.

Auteurs

David García-Callejas (D)

Estación Biológica de Doñana, CSIC, Calle Américo Vespucio 26, 41092, Sevilla, Spain.

Roberto Molowny-Horas (R)

CREAF, Cerdanyola del Vallès, 08193, Spain.

Miguel B Araújo (MB)

Departamento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas (CSIC), Calle de José Gutiérrez Abascal 2, Madrid, 28006, Spain.
InBio/Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO), Largo dos Colegiais, Universidade de Évora, Évora, 7000, Portugal.
Center for Macroecology, Evolution and Climate (CMEC), Natural History Museum of Denmark, University of Copenhagen, Copenhagen, 2100, Denmark.

Dominique Gravel (D)

Département de Biologie, Universite de Sherbrooke, Sherbrooke, Québec, Canada.

Articles similaires

Lakes Salinity Archaea Bacteria Microbiota
Rivers Turkey Biodiversity Environmental Monitoring Animals
1.00
Iran Environmental Monitoring Seasons Ecosystem Forests
Cities China Government Conservation of Natural Resources Humans

Classifications MeSH