PTM-Logo: a program for generation of sequence logos based on position-specific background amino-acid probabilities.


Journal

Bioinformatics (Oxford, England)
ISSN: 1367-4811
Titre abrégé: Bioinformatics
Pays: England
ID NLM: 9808944

Informations de publication

Date de publication:
15 12 2019
Historique:
received: 01 03 2019
revised: 29 05 2019
accepted: 16 07 2019
pubmed: 19 7 2019
medline: 8 7 2020
entrez: 19 7 2019
Statut: ppublish

Résumé

Identification of the amino-acid motifs in proteins that are targeted for post-translational modifications (PTMs) is of great importance in understanding regulatory networks. Information about targeted motifs can be derived from mass spectrometry data that identify peptides containing specific PTMs such as phosphorylation, ubiquitylation and acetylation. Comparison of input data against a standardized 'background' set allows identification of over- and under-represented amino acids surrounding the modified site. Conventionally, calculation of targeted motifs assumes a random background distribution of amino acids surrounding the modified position. However, we show that probabilities of amino acids depend on (i) the type of the modification and (ii) their positions relative to the modified site. Thus, software that identifies such over- and under-represented amino acids should make appropriate adjustments for these effects. Here we present a new program, PTM-Logo, that generates representations of these amino acid preferences ('logos') based on position-specific amino-acid probability backgrounds calculated either from user-input data or curated databases. PTM-Logo is freely available online at http://sysbio.chula.ac.th/PTMLogo/ or https://hpcwebapps.cit.nih.gov/PTMLogo/. Supplementary data are available at Bioinformatics online.

Identifiants

pubmed: 31318409
pii: 5535597
doi: 10.1093/bioinformatics/btz568
pmc: PMC7500089
doi:

Substances chimiques

Amino Acids 0
Proteins 0

Types de publication

Journal Article Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

5313-5314

Subventions

Organisme : Intramural NIH HHS
ID : Z01 HL001285
Pays : United States

Informations de copyright

© The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

Références

Cell Rep. 2014 Sep 11;8(5):1583-94
pubmed: 25159151
Nucleic Acids Res. 2016 Jan 4;44(D1):D435-46
pubmed: 26578568
Am J Physiol Cell Physiol. 2011 Apr;300(4):C755-70
pubmed: 21209370
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W281-7
pubmed: 22638583
Nucleic Acids Res. 2015 Jul 1;43(W1):W543-6
pubmed: 25897125
Am J Physiol Cell Physiol. 2012 Oct 1;303(7):C715-27
pubmed: 22723110
Nucleic Acids Res. 2015 Jan;43(Database issue):D512-20
pubmed: 25514926
Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):E8875-E8884
pubmed: 28973931
PLoS One. 2013 Dec 26;8(12):e82655
pubmed: 24386107
Nucleic Acids Res. 2003 Jul 1;31(13):3635-41
pubmed: 12824383
Cell. 2007 Jun 29;129(7):1415-26
pubmed: 17570479

Auteurs

Thammakorn Saethang (T)

Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
Department of Computer Science, Kasetsart University, Bangkok, Thailand.

Kenneth Hodge (K)

Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.

Chin-Rang Yang (CR)

Epithelial Systems Biology Laboratory, NHLBI, National Institutes of Health, Bethesda, MD, USA.

Yue Zhao (Y)

Epithelial Systems Biology Laboratory, NHLBI, National Institutes of Health, Bethesda, MD, USA.

Ingorn Kimkong (I)

Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand.

Mark A Knepper (MA)

Epithelial Systems Biology Laboratory, NHLBI, National Institutes of Health, Bethesda, MD, USA.

Trairak Pisitkun (T)

Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
Epithelial Systems Biology Laboratory, NHLBI, National Institutes of Health, Bethesda, MD, USA.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages
Databases, Protein Protein Domains Protein Folding Proteins Deep Learning

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software
Cephalometry Humans Anatomic Landmarks Software Internet

Classifications MeSH