Effect of exposure to phthalates on association of polycyclic aromatic hydrocarbons with 8-hydroxy-2'-deoxyguanosine.
8-hydroxy-2′-deoxyguanosine
Bayesian kernel machine regression
Phthalates
Polycyclic aromatic hydrocarbons
Reactive oxygen species
Journal
The Science of the total environment
ISSN: 1879-1026
Titre abrégé: Sci Total Environ
Pays: Netherlands
ID NLM: 0330500
Informations de publication
Date de publication:
15 Nov 2019
15 Nov 2019
Historique:
received:
05
04
2019
revised:
14
06
2019
accepted:
07
07
2019
pubmed:
20
7
2019
medline:
20
7
2019
entrez:
20
7
2019
Statut:
ppublish
Résumé
Although polycyclic aromatic hydrocarbons (PAHs) and phthalates separately related to oxidative DNA damage have been reported, the joint effect of them on oxidative DNA damage need to be evaluated. In this pilot study, 106 participants were recruited from the community-dwelling residents (n=1240) of Wuhan city, China. Each individual provided three continuous days of spot urine samples for measuring the urinary monohydroxylated PAHs (OH-PAHs), phthalates metabolites and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in the two seasons. Linear mixed effect model and Bayesian Kernel Machine Regression (BKMR) were used to analyze joint effect of urinary PAHs and phthalates metabolites on urinary 8-OHdG levels. We measured cellular and mitochondrial reactive oxygen species (ROS), malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) levels as well as IL-6 and IL-8 secretions by the corresponding commercial kits in HepG2 cells treated with di (2-ethylhexyl) phthalate (DEHP, 62.5, 125.00, 250.00, 500.00 or 1000.00μM) alone, benzo[a]pyrene (BaP, 50.00μM) alone or both DEHP and BaP. Linear mixed effect model showed that each of urinary PAHs metabolite was positively associated with urinary 8-OHdG levels; urinary level of mono (2-ethylhexyl) phthalate or monoisononyl phthalate was positively associated with urinary 8-OHdG levels; BKMR model indicated that a positive association of eight OH-PAHs with urinary 8-OHdG levels, nine urinary phthalates metabolites enhanced the association. We found that DEHP at the indicated concentration plus 50.00μM BaP increased cellular and mitochondrial ROS levels, IL-6 and IL-8 secretions at 24 and 48h as well as MDA levels and GSH-Px activities at 48h, compared to the solvent control. Exposure to certain dose phthalates may attenuate the positive association of PAHs exposure with oxidative DNA damage in the body. DEHP at the certain concentrations enhanced BaP-induced mitochondrial ROS, pro-inflammatory response and the activation of the antioxidant defense system in HepG2 cells.
Sections du résumé
BACKGROUND
BACKGROUND
Although polycyclic aromatic hydrocarbons (PAHs) and phthalates separately related to oxidative DNA damage have been reported, the joint effect of them on oxidative DNA damage need to be evaluated.
METHODS
METHODS
In this pilot study, 106 participants were recruited from the community-dwelling residents (n=1240) of Wuhan city, China. Each individual provided three continuous days of spot urine samples for measuring the urinary monohydroxylated PAHs (OH-PAHs), phthalates metabolites and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in the two seasons. Linear mixed effect model and Bayesian Kernel Machine Regression (BKMR) were used to analyze joint effect of urinary PAHs and phthalates metabolites on urinary 8-OHdG levels. We measured cellular and mitochondrial reactive oxygen species (ROS), malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) levels as well as IL-6 and IL-8 secretions by the corresponding commercial kits in HepG2 cells treated with di (2-ethylhexyl) phthalate (DEHP, 62.5, 125.00, 250.00, 500.00 or 1000.00μM) alone, benzo[a]pyrene (BaP, 50.00μM) alone or both DEHP and BaP.
RESULTS
RESULTS
Linear mixed effect model showed that each of urinary PAHs metabolite was positively associated with urinary 8-OHdG levels; urinary level of mono (2-ethylhexyl) phthalate or monoisononyl phthalate was positively associated with urinary 8-OHdG levels; BKMR model indicated that a positive association of eight OH-PAHs with urinary 8-OHdG levels, nine urinary phthalates metabolites enhanced the association. We found that DEHP at the indicated concentration plus 50.00μM BaP increased cellular and mitochondrial ROS levels, IL-6 and IL-8 secretions at 24 and 48h as well as MDA levels and GSH-Px activities at 48h, compared to the solvent control.
CONCLUSIONS
CONCLUSIONS
Exposure to certain dose phthalates may attenuate the positive association of PAHs exposure with oxidative DNA damage in the body. DEHP at the certain concentrations enhanced BaP-induced mitochondrial ROS, pro-inflammatory response and the activation of the antioxidant defense system in HepG2 cells.
Identifiants
pubmed: 31323583
pii: S0048-9697(19)33226-7
doi: 10.1016/j.scitotenv.2019.07.113
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
378-392Informations de copyright
Copyright © 2019 Elsevier B.V. All rights reserved.