Local Interaction Density (LID), a Fast and Efficient Tool to Prioritize Docking Poses.
benchmarking
protein ligand interaction
scoring
Journal
Molecules (Basel, Switzerland)
ISSN: 1420-3049
Titre abrégé: Molecules
Pays: Switzerland
ID NLM: 100964009
Informations de publication
Date de publication:
18 Jul 2019
18 Jul 2019
Historique:
received:
13
06
2019
revised:
11
07
2019
accepted:
16
07
2019
entrez:
21
7
2019
pubmed:
22
7
2019
medline:
21
12
2019
Statut:
epublish
Résumé
Ligand docking at a protein site can be improved by prioritizing poses by similarity to validated binding modes found in the crystal structures of ligand/protein complexes. The interactions formed in the predicted model are searched in each of the reference 3D structures, taken individually. We propose to merge the information provided by all references, creating a single representation of all known binding modes. The method is called LID, an acronym for Local Interaction Density. LID was benchmarked in a pose prediction exercise on 19 proteins and 1382 ligands using PLANTS as docking software. It was also tested in a virtual screening challenge on eight proteins, with a dataset of 140,000 compounds from DUD-E and PubChem. LID significantly improved the performance of the docking program in both pose prediction and virtual screening. The gain is comparable to that obtained with a rescoring approach based on the individual comparison of reference binding modes (the GRIM method). Importantly, LID is effective with a small number of references. LID calculation time is negligible compared to the docking time.
Identifiants
pubmed: 31323745
pii: molecules24142610
doi: 10.3390/molecules24142610
pmc: PMC6681060
pii:
doi:
Substances chimiques
Ligands
0
Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Agence Nationale de la Recherche
ID : ANR-10-LABX-0034
Références
Proteins. 2000 Sep 1;40(4):623-36
pubmed: 10899786
Proteins. 2003 Sep 1;52(4):609-23
pubmed: 12910460
J Med Chem. 2004 Jan 15;47(2):337-44
pubmed: 14711306
J Med Chem. 2004 Jun 3;47(12):3142-8
pubmed: 15163194
J Med Chem. 2006 Nov 16;49(23):6789-801
pubmed: 17154509
J Chem Inf Model. 2009 Jan;49(1):84-96
pubmed: 19125657
J Med Chem. 2010 Dec 23;53(24):8461-7
pubmed: 20929257
J Med Chem. 2012 Jul 26;55(14):6582-94
pubmed: 22716043
J Chem Inf Model. 2012 Aug 27;52(8):2287-99
pubmed: 22834646
J Chem Inf Model. 2013 Mar 25;53(3):623-37
pubmed: 23432543
J Chem Inf Model. 2013 Aug 26;53(8):1842-52
pubmed: 23617227
J Cheminform. 2014 Apr 03;6:12
pubmed: 24694216
J Phys Chem B. 2015 Jan 22;119(3):1083-102
pubmed: 25229837
J Chem Inf Model. 2015 Jun 22;55(6):1108-19
pubmed: 26057716
J Chem Inf Model. 2015 Jul 27;55(7):1460-8
pubmed: 26090547
J Chem Inf Model. 2015 Aug 24;55(8):1771-80
pubmed: 26151876
Phys Chem Chem Phys. 2016 May 14;18(18):12964-75
pubmed: 27108770
Curr Opin Pharmacol. 2016 Oct;30:59-68
pubmed: 27479316
J Comput Aided Mol Des. 2016 Sep;30(9):669-683
pubmed: 27480696
Biophys Physicobiol. 2016 Jul 14;13:149-156
pubmed: 27924269
J Chem Inf Model. 2017 May 22;57(5):1197-1209
pubmed: 28414463
J Comput Chem. 2017 Jun 5;38(15):1229-1237
pubmed: 28419481
J Comput Aided Mol Des. 2018 Jan;32(1):75-87
pubmed: 28766097
ChemMedChem. 2018 Mar 20;13(6):507-510
pubmed: 29024463
J Cheminform. 2017 Jun 12;9(1):37
pubmed: 29086077
J Comput Aided Mol Des. 2018 Jan;32(1):1-20
pubmed: 29204945
Front Pharmacol. 2018 Jan 24;9:11
pubmed: 29416509
J Med Chem. 2018 Jul 26;61(14):5963-5973
pubmed: 29906118
J Cheminform. 2018 Oct 4;10(1):48
pubmed: 30288626
Front Pharmacol. 2018 Sep 24;9:1089
pubmed: 30319422
J Chem Inf Model. 2019 Jan 28;59(1):573-585
pubmed: 30563339
PLoS Comput Biol. 2019 Jan 30;15(1):e1006705
pubmed: 30699115
J Cheminform. 2019 Mar 22;11(1):24
pubmed: 30903304
J Phys Chem Lett. 2019 May 2;10(9):2244-2249
pubmed: 30965004
J Mol Biol. 1982 Oct 25;161(2):269-88
pubmed: 7154081
Protein Eng. 1998 Sep;11(9):739-47
pubmed: 9796821