Evaluation of pharmacokinetic modeling strategies for in-vivo quantification of tau with the radiotracer [
Kinetic modeling
Pharmacokinetics
Positron emission tomography
Tau
[18F]MK6240
Journal
European journal of nuclear medicine and molecular imaging
ISSN: 1619-7089
Titre abrégé: Eur J Nucl Med Mol Imaging
Pays: Germany
ID NLM: 101140988
Informations de publication
Date de publication:
Sep 2019
Sep 2019
Historique:
received:
03
01
2019
accepted:
18
06
2019
pubmed:
25
7
2019
medline:
15
9
2020
entrez:
24
7
2019
Statut:
ppublish
Résumé
[ Thirty-five subjects, consisting of 18 healthy controls (CTRL), 11 subjects with mild cognitive impairment (MCI) and six with Alzheimer's Disease (AD), underwent dynamic [ Whole blood:plasma ratio stabilized to 0.66 ± 0.01 after 15 min. Percent parent in plasma (%PP) followed a single exponential and ranged from 0 to 10% at 90 min. [ [
Identifiants
pubmed: 31332496
doi: 10.1007/s00259-019-04419-z
pii: 10.1007/s00259-019-04419-z
pmc: PMC6709592
mid: NIHMS1535449
doi:
Substances chimiques
Isoquinolines
0
MK-6240
0
Radiopharmaceuticals
0
tau Proteins
0
Types de publication
Evaluation Study
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2099-2111Subventions
Organisme : NIBIB NIH HHS
ID : P41 EB022544
Pays : United States
Organisme : NIDDK NIH HHS
ID : P30 DK040561
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG062421
Pays : United States
Organisme : NIH HHS
ID : S10 OD018035
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG046396
Pays : United States
Commentaires et corrections
Type : CommentIn
Type : ErratumIn
Références
Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–59.
doi: 10.1007/BF00308809
Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology. 1992;42:631–9.
doi: 10.1212/WNL.42.3.631
Villemagne VL, Fodero-Tavoletti MT, Masters CL, Rowe CC. Tau imaging early progress and future directions. Lancet Neurol. 2015;14:114–24.
doi: 10.1016/S1474-4422(14)70252-2
Okamura N, Harada R, Ishiki A, Kikuchi A, Nakamura T, Kudo Y. The development and validation of tau PET tracers: current status and future directions. Clin Transl Imaging. 2018;6:305–16.
doi: 10.1007/s40336-018-0290-y
Leuzy A, Chiotis K, Gilberg PG, Almkvist O, Rodriguez-Vieitez E, Nordberg A. Tau PET imaging in neurodegenerative taupathies-still a challenge. Mol Psychiatry. 2019. https://doi.org/10.1038/s41380-018-0342-8 .
Hall B, Mak E, Cervenka S, Aigbirhio FI, Rowe JB, O’Brien JT. In vivo tau PET imaging in dementia: pathophysiology, radiotracer quantification, and a systematic review of clinical findings. Ageing Res Rev. 2017;36:50–63.
doi: 10.1016/j.arr.2017.03.002
Walji AM, Hostetler ED, Selnick H, Zeng Z, Miller P, Bennacef I, et al. Discovery of 6-(Fluoro-(18)F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([(18)F]-MK-6240): a positron emission tomography (PET) imaging agent for quantification of neurofibrillary tangles (NFTs). J Med Chem. 2016;59:4778–89.
doi: 10.1021/acs.jmedchem.6b00166
Hostetler ED, Walji AM, Zeng Z, Miller P, Bennacef I, Salinas C, et al. Preclinical characterization of 18F-MK-6240, a promising PET tracer for in vivo quantification of human neurofibrillary tangles. J Nucl Med. 2016;57:1599–606.
doi: 10.2967/jnumed.115.171678
Betthauser TJ, Cody KA, Zammit MD, Murali D, Converse AK, Barnhart TE, et al. In vivo characterization and quantification of neurofibrillary tau PET radioligand [
Lohith TG, Bennacef I, Vandenberghe R, Vandenbulcke M, Salinas-Valenzuela C, Declercq R, et al. J Nucl Med. 2018;60(1):107–14. https://doi.org/10.2967/jnumed.118.208215 .
Pascoal TA, Shin M, Kang MS, Chamoun M, Chartrand D, Mathotaarachchi S, et al. In vivo quantification of neurofibrillary tangles with [
doi: 10.1186/s13195-018-0402-y
Johnson KA, Schultz A, Betensky RA, Becker JA, Sepulcre J, Rentz D, et al. Tau PET imaging in aging and early Alzheimer’s disease. Ann Neurol. 2016;79:110–9.
doi: 10.1002/ana.24546
Collier TL, Yokell DL, Livni E, Rice PA, Celen S, Serdons K, et al. cGMP production of the radiopharmaceutical [
doi: 10.1002/jlcr.3496
Adam LE, Zaers J, Ostertag H, Trojan H, Bellemann ME, Brix G. Performance evaluation of the whole-body PET scanner ECAT EXACT HR+ following the IEC standard. IEEE Trans Nucl Sci. 1997;44:1172–9.
doi: 10.1109/23.596983
Karakatsanis N, Sakellios N, Tsantilas NX, et al. Comparative evaluation of two commercial PET scanners, ECAT EXACT HR+ and biograph 2, using GATE. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip. 2006;569:368–72.
doi: 10.1016/j.nima.2006.08.110
Collier T, Normandin MD, El Fakhri G, Vasdev N. Automation of column-switching HPLC for analysis of radiopharmaceuticals and their metabolites in plasma. Soc Nucl Med Ann Meet Abstr. 2013;54:1133.
Hilton J, Yokoi F, Dannals RF, Ravert HT, Szabo Z, Wong DF. Column-switching HPLC for the analysis of plasma in PET imaging studies. Nucl Med Biol. 2000;27:627–30.
doi: 10.1016/S0969-8051(00)00125-6
Wooten DW, Guehl NJ, Verwer EE, Shoup TM, Yokell DL, Zubcevik N, et al. Pharmacokinetic evaluation of the tau PET radiotracer
doi: 10.2967/jnumed.115.170910
Alpert NM, Berdichevsky D, Levin Z, Morris ED, Fischman AJ. Improved methods for image registration. Neuroimage. 1996;3:10–8.
doi: 10.1006/nimg.1996.0002
Jenkinson M, Beckman CF, Behrens TEJ, Woolrich MW, Smith SMFSL. NeuroImage. 2012;62:782–90.
doi: 10.1016/j.neuroimage.2011.09.015
Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27:1533–9.
doi: 10.1038/sj.jcbfm.9600493
Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab. 1990;10:740–7.
doi: 10.1038/jcbfm.1990.127
Ichise M, Toyama H, Innis RB, Carson RE. Strategies to improve neuroreceptor parameter estimation by linear regression analysis. J Cereb Blood Flow Metab. 2002;22:1271–81.
doi: 10.1097/01.WCB.0000038000.34930.4E
Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL. Distribution volumes ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab. 1996;16:834–40.
doi: 10.1097/00004647-199609000-00008
Ichise M, Liow JS, Lu JQ, Takano A, Model K, Toyama H, et al. Linearized reference tissue parametric imaging methods: application to [11C]DASB positron emission tomography studies of the serotonin transporter in human brain. J Cereb Blood Flow Metab. 2003;23:1096–112.
doi: 10.1097/01.WCB.0000085441.37552.CA
Logan J. A review of graphical methods for tracer studies and strategies to reduce bias. Nucl Med Biol. 2003;30:833–44.
doi: 10.1016/S0969-8051(03)00114-8
Cunningham VJ, Hume SP, Price GR, Ahier RG, Cremer JE, Jones AK. Compartmental analysis of diprenorphine binding to opiate receptors in the rat in vivo and its comparison with equilibrium data in vitro. J Cereb Blood Flow Metab. 1991;11:1–9.
doi: 10.1038/jcbfm.1991.1
Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage. 1996;4:153–8.
doi: 10.1006/nimg.1996.0066
Akaike H. A new look at the statictical model identification. IEEE Trans Autom Control. 1974;19:716–23.
doi: 10.1109/TAC.1974.1100705
Burnham KP, Andersen DR. Model selection and multimodel inference: a practical information-theoretic approach. 2nd ed. New York: Springer; 2002.
Salinas CA, Searle GE, Gunn RN. The simplified reference tissue model: model assumption violations and their impact on binding potential. J Cereb Blood Flow Metab. 2015;35:304–11.
doi: 10.1038/jcbfm.2014.202