Emergence of digital biomarkers to predict and modify treatment efficacy: machine learning study.


Journal

BMJ open
ISSN: 2044-6055
Titre abrégé: BMJ Open
Pays: England
ID NLM: 101552874

Informations de publication

Date de publication:
23 07 2019
Historique:
entrez: 25 7 2019
pubmed: 25 7 2019
medline: 6 8 2020
Statut: epublish

Résumé

Development of digital biomarkers to predict treatment response to a digital behavioural intervention. Machine learning using random forest classifiers on data generated through the use of a digital therapeutic which delivers behavioural therapy to treat cardiometabolic disease. Data from 13 explanatory variables (biometric and engagement in nature) generated in the first 28 days of a 12-week intervention were used to train models. Two levels of response to treatment were predicted: (1) systolic change ≥10 mm Hg (SC model), and (2) shift down to a blood pressure category of elevated or better (ER model). Models were validated using leave-one-out cross validation and evaluated using area under the curve receiver operating characteristics (AUROC) and specificity- sensitivity. Ability to predict treatment response with a subset of nine variables, including app use and baseline blood pressure, was also tested (models SC-APP and ER-APP). Data generated through ad libitum use of a digital therapeutic in the USA. Deidentified data from 135 adults with a starting blood pressure ≥130/80, who tracked blood pressure for at least 7 weeks using the digital therapeutic. The SC model had an AUROC of 0.82 and a sensitivity of 58% at a specificity of 90%. The ER model had an AUROC of 0.69 and a sensitivity of 32% at a specificity at 91%. Dropping explanatory variables related to blood pressure resulted in an AUROC of 0.72 with a sensitivity of 42% at a specificity of 90% for the SC-APP model and an AUROC of 0.53 for the ER-APP model. Machine learning was used to transform data from a digital therapeutic into digital biomarkers that predicted treatment response in individual participants. Digital biomarkers have potential to improve treatment outcomes in a digital behavioural intervention.

Identifiants

pubmed: 31337662
pii: bmjopen-2019-030710
doi: 10.1136/bmjopen-2019-030710
pmc: PMC6661657
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e030710

Informations de copyright

© Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

Déclaration de conflit d'intérêts

Competing interests: NLG, KLE, KJA, DLK and MAB are employees and equity owners of Better Therapeutics, LLC; DME, JC and SD are independent paid scientific consultants of Better Therapeutics and JC was provided the raw data to perform all machine learning methods independently.

Références

Lancet. 2016 Mar 5;387(10022):957-967
pubmed: 26724178
NPJ Digit Med. 2019;2(1):
pubmed: 30868107
J Clin Hypertens (Greenwich). 2008 Aug;10(8):644-6
pubmed: 18772648
Arch Intern Med. 2009 Aug 10;169(15):1355-62
pubmed: 19667296
Medicine (Baltimore). 2018 Jun;97(25):e11121
pubmed: 29924011
Nat Biotechnol. 2016 Mar;34(3):239-46
pubmed: 26963544
Sci Rep. 2018 Oct 2;8(1):14685
pubmed: 30279436
NPJ Digit Med. 2018 Mar 28;1:10
pubmed: 31304295
Am J Med. 2017 Jan;130(1):14-20
pubmed: 27591179
Heart. 2012 May;98(9):683-90
pubmed: 22397945
NPJ Digit Med. 2018 Oct 2;1:50
pubmed: 31304329
JMIR Diabetes. 2018 Feb 14;3(1):e4
pubmed: 30291074
BMJ Open. 2012 Aug 10;2(4):
pubmed: 22885591
ScientificWorldJournal. 2013 Jun 26;2013:129841
pubmed: 23878520
J Med Internet Res. 2018 Jun 22;20(6):e207
pubmed: 29934284
BMJ Open. 2018 Apr 10;8(4):e020124
pubmed: 29643160
JAMA. 2017 Oct 10;318(14):1377-1384
pubmed: 29049590
Gynecol Oncol. 2008 Feb;108(2):402-8
pubmed: 18061248
BMC Bioinformatics. 2007 Jan 05;8:4
pubmed: 17207271
Heart. 2012 May;98(9):691-8
pubmed: 22397946
Circulation. 2019 Mar 5;139(10):e56-e528
pubmed: 30700139
JMIR Mhealth Uhealth. 2018 Apr 10;6(4):e92
pubmed: 29636320
JAMA. 2016 Feb 9;315(6):551-2
pubmed: 26864406
Diabetes Technol Ther. 2008 Jun;10(3):160-8
pubmed: 18473689
Diabetes Care. 2011 Mar;34(3):533-9
pubmed: 21266648
J Am Coll Cardiol. 2018 May 15;71(19):e127-e248
pubmed: 29146535
Biomed Res Int. 2014;2014:731685
pubmed: 24804239
Environ Mol Mutagen. 2008 Jan;49(1):46-60
pubmed: 18095330
Eur Heart J. 2018 Sep 1;39(33):3021-3104
pubmed: 30165516
PLoS One. 2014 Jan 02;9(1):e84408
pubmed: 24392133
NPJ Digit Med. 2018 Oct 2;1:53
pubmed: 31304332
J Hypertens. 2014 Dec;32(12):2285-95
pubmed: 25255397
Health Aff (Millwood). 2016 Aug 1;35(8):1416-23
pubmed: 27503966
PLoS One. 2017 Oct 30;12(10):e0187240
pubmed: 29084293

Auteurs

Nicole L Guthrie (NL)

Better Therapeutics LLC, San Francisco, California, USA.

Jason Carpenter (J)

Manifold, Inc, Oakland, California, USA.

Katherine L Edwards (KL)

Better Therapeutics LLC, San Francisco, California, USA.

Kevin J Appelbaum (KJ)

Better Therapeutics LLC, San Francisco, California, USA.

Sourav Dey (S)

Manifold, Inc, Oakland, California, USA.

David M Eisenberg (DM)

Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.

David L Katz (DL)

Better Therapeutics LLC, San Francisco, California, USA.
Griffen Hospital, Yale University Prevention Research Center, Derby, Connecticut, USA.

Mark A Berman (MA)

Better Therapeutics LLC, San Francisco, California, USA mark@bettertherapeutics.io.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH