Hyperpolarization of Amino Acids in Water Utilizing Parahydrogen on a Rhodium Nanocatalyst.
NMR spectroscopy
PHIP
amino acids
hyperpolarization
nanoparticles
Journal
Chemistry (Weinheim an der Bergstrasse, Germany)
ISSN: 1521-3765
Titre abrégé: Chemistry
Pays: Germany
ID NLM: 9513783
Informations de publication
Date de publication:
22 Aug 2019
22 Aug 2019
Historique:
received:
21
06
2019
pubmed:
28
7
2019
medline:
28
7
2019
entrez:
27
7
2019
Statut:
ppublish
Résumé
NMR offers many possibilities in chemical analysis, structural investigations, and medical diagnostics. Although it is broadly used, one of NMR spectroscopies main drawbacks is low sensitivity. Hyperpolarization techniques enhance NMR signals by more than four orders of magnitude allowing the design of new contrast agents. Parahydrogen induced polarization that utilizes the para-hydrogen's singlet state to create enhanced signals is of particular interest since it allows to produce molecular imaging agents within seconds. Herein, we present a strategy for signal enhancement of the carbonyl
Identifiants
pubmed: 31347750
doi: 10.1002/chem.201902878
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
11031-11035Subventions
Organisme : Max Planck Society
Informations de copyright
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Références
T. G. Walker, W. Happer, Rev. Mod. Phys. 1997, 69, 629-642;
M. S. Albert, G. D. Cates, B. Driehuys, W. Happer, B. Saam, C. S. Springer, A. Wishnia, Nature 1994, 370, 199-201.
R. G. Griffin, T. F. Prisner, Phys. Chem. Chem. Phys. 2010, 12, 5737-5740.
C. R. Bowers, D. P. Weitekamp, J. Am. Chem. Soc. 1987, 109, 5541-5542;
J. B. Hövener, A. N. Pravdivtsev, B. Kidd, C. R. Bowers, S. Glöggler, K. V. Kovtunov, M. Plaumann, R. Katz-Brull, K. Buckenmaier, A. Jerschow, F. Reineri, T. Theis, R. V. Shchepin, S. Wagner, P. Bhattacharya, N. M. Zacharias, E. Y. Chekmenev, Angew. Chem. Int. Ed. 2018, 57, 11140-11162;
Angew. Chem. 2018, 130, 11310-11333.
R. W. Adams, J. A. Aguilar, K. D. Atkinson, M. J. Cowley, P. I. P. Elliott, S. B. Duckett, G. G. R. Green, I. G. Khazal, J. López-Serrano, D. C. Williamson, Science 2009, 323, 1708.
J. H. Ardenkjaer-Larsen, B. Fridlund, A. Gram, G. Hansson, L. Hansson, M. H. Lerche, R. Servin, M. Thaning, K. Golman, Proc. Natl. Acad. Sci. USA 2003, 100, 10158-10163.
S. Aime, W. Dastrù, R. Gobetto, A. Viale, Org. Biomol. Chem. 2005, 3, 3948-3954;
J. A. Tang, F. Gruppi, R. Fleysher, D. K. Sodickson, J. W. Canary, A. Jerschow, Chem. Commun. 2011, 47, 958-960;
F. Gruppi, X. Xu, B. Zhang, J. A. Tang, A. Jerschow, J. W. Canary, Angew. Chem. Int. Ed. 2012, 51, 11787-11790;
Angew. Chem. 2012, 124, 11957-11960;
M. Körner, G. Sauer, A. Heil, D. Nasu, M. Empting, D. Tietze, S. Voigt, H. Weidler, T. Gutmann, O. Avrutina, H. Kolmar, T. Ratajczyk, G. Buntkowsky, Chem. Commun. 2013, 49, 7839-7841;
P. C. Soon, X. Xu, B. Zhang, F. Gruppi, J. W. Canary, A. Jerschow, Chem. Commun. 2013, 49, 5304-5306;
T. Trantzschel, M. Plaumann, J. Bernarding, D. Lego, T. Ratajczyk, S. Dillenberger, G. Buntkowsky, J. Bargon, U. Bommerich, Appl. Magn. Reson. 2013, 44, 267-278;
G. Sauer, D. Nasu, D. Tietze, T. Gutmann, S. Englert, O. Avrutina, H. Kolmar, G. Buntkowsky, Angew. Chem. Int. Ed. 2014, 53, 12941-12945;
Angew. Chem. 2014, 126, 13155-13159;
S. Glöggler, S. Wagner, L. S. Bouchard, Chem. Sci. 2015, 6, 4261-4266;
A. S. Kiryutin, G. Sauer, D. Tietze, M. Brodrecht, S. Knecht, A. V. Yurkovskaya, K. L. Ivanov, O. Avrutina, H. Kolmar, G. Buntkowsky, Chemistry 2019, 25, 4025-4030;
S. Glöggler, R. Müller, J. Colell, M. Emondts, M. Dabrowski, B. Blumich, S. Appelt, Phys. Chem. Chem. Phys. 2011, 13, 13759-13764.
J. McCormick, A. M. Grunfeld, Y. N. Ertas, A. N. Biswas, K. L. Marsh, S. Wagner, S. Glöggler, L.-S. Bouchard, Anal. Chem. 2017, 89, 7190-7194.
I. V. Koptyug, K. V. Kovtunov, S. R. Burt, M. S. Anwar, C. Hilty, S.-I. Han, A. Pines, R. Z. Sagdeev, J. Am. Chem. Soc. 2007, 129, 5580-5586;
K. V. Kovtunov, I. E. Beck, V. I. Bukhtiyarov, I. V. Koptyug, Angew. Chem. Int. Ed. 2008, 47, 1492-1495;
Angew. Chem. 2008, 120, 1514-1517;
R. Sharma, L. S. Bouchard, Sci. Rep. 2012, 2, 277;
S. Glöggler, A. M. Grunfeld, Y. N. Ertas, J. McCormick, S. Wagner, P. P. M. Schleker, L.-S. Bouchard, Angew. Chem. Int. Ed. 2015, 54, 2452-2456;
Angew. Chem. 2015, 127, 2482-2486;
L. B. Bales, K. V. Kovtunov, D. A. Barskiy, R. V. Shchepin, A. M. Coffey, L. M. Kovtunova, A. V. Bukhtiyarov, M. A. Feldman, V. I. Bukhtiyarov, E. Y. Chekmenev, I. V. Koptyug, B. M. Goodson, J. Phys. Chem. C 2017, 121, 15304-15309;
J. McCormick, S. Korchak, S. Mamone, Y. N. Ertas, Z. Liu, L. Verlinsky, S. Wagner, S. Glöggler, L. S. Bouchard, Angew. Chem. Int. Ed. 2018, 57, 10692-10696;
Angew. Chem. 2018, 130, 10852-10856;
E. W. Zhao, R. Maligal-Ganesh, C. Xiao, T.-W. Goh, Z. Qi, Y. Pei, H. E. Hagelin-Weaver, W. Huang, C. R. Bowers, Angew. Chem. Int. Ed. 2017, 56, 3925-3929;
Angew. Chem. 2017, 129, 3983-3987.
F. Reineri, T. Boi, S. Aime, Nat. Commun. 2015, 6, 5858.
S. Korchak, S. Yang, S. Mamone, S. Glöggler, ChemistryOpen 2018, 7, 344-348;
S. Korchak, S. Mamone, S. Glöggler, ChemistryOpen 2018, 7, 672-676.
M. Brossat, T. S. Moody, F. de Nanteuil, S. J. C. Taylor, F. Vaughan, Org. Process Res. Dev. 2009, 13, 706-709;
F. Weygand, W. Steglich, Angew. Chem. 1961, 73, 757.
C. Hundshammer, M. Grashei, A. Greiner, S. J. Glaser, F. Schilling, ChemPhysChem 2019, 20, 798-802.
L. Bordonali, N. Nordin, E. Fuhrer, N. MacKinnon, J. G. Korvink, Lab Chip 2019, 19, 503-512;
J. Eills, W. Hale, M. Sharma, M. Rossetto, M. H. Levitt, M. Utz, arXiv e-prints, 2019, arXiv:1901.07065v2 [physics.chem-ph], accessed April 29, 2019.